

CP violation with heavy quarks at Belle and Belle II

Jim Libby (IIT Madras) on behalf of Belle (II) Collaborations

14th September 2021

Heavy Quark Leptons 2021

University of Warwick and online

Introduction and outline

Standard model CP violation (CPV) well tested: Belle, BaBar and LHCb

But of course there is room for further improvement and overconstraint

Belle

- $e^+e^- \to \Upsilon(4S) \to B\overline{B}$
- Asymmetric energy to allow time-dependent measurements
- Coherent production
- Low multiplicity
- Kinematic constraints from the initial state
- KEKB/Belle (1999-2010)
 - $\sim 1 \text{ ab}^{-1}$ with $\sim 70\%$ at $\Upsilon(4S)$

HQL 2021 - CPV Belle and Belle II 14/9/2021

Belle and Belle II

- $e^+e^- \to \Upsilon(4S) \to B\overline{B}$
- Asymmetric energy to allow time-dependent measurements
- Coherent production
- Low multiplicity
- Kinematic constraints from the initial state
- KEKB/Belle (1999-2010)
 - $\sim 1 \text{ ab}^{-1}$ with $\sim 70\%$ at $\Upsilon(4S)$
- SuperKEKB/Belle II (2018+)
 - Target 30 × (50 ×) instantaneous (integrated) luminosity
 - Upgraded detector
 - 213 fb⁻¹ recorded up to July 2021 but results presented for a subset

General *e*⁺*e*⁻ considerations

- Not just *B* mesons
 - $e^+e^- \rightarrow q\bar{q}$ continuum
 - charm physics (see backup)
 - significant background for *B* decays with small BF or high multiplicity final state
- Continuum suppression in many analyses
 - event shape
 - vertexing and
 - flavour tag
- Constrained kinematics
 - Exploit the known \sqrt{s} : ΔE and M_{bc}

-0.3

14/9/2021

HQL 2021 - CPV Belle and Belle II

1) Time-dependent CPV

- *Raison d'etre* for BaBar and Belle:
 - CPV due to interference between mixing and decay in $B^0 \rightarrow J/\psi K_S^0$
 - Precision measurement of sin 2β (or sin $2\phi_1$)
 - Nobel Prize 2008 for Kobayashi and Maskawa

• B⁰

÷₿

PRD 103, 032003 (2021)

0 ∆t (ps)

 $B^0 \rightarrow K_s^0 K_s^0 K_s^0$

∆t (ps)

-5

Belle

5

60

40

20

Decay rate asymmetry -0 5.0 0 2.0

Events / (2 ps)

1) $B^0 \to K^0_S K^0_S K^0_S$

- Pure penguin
 - seek new weak phases in the loop
- Signal extraction from 711 fb⁻¹ of Belle data
 - ΔE , $M_{\rm bc}$ and continuum suppression variable
- Vertex using $K_S^0 \rightarrow \pi^+ \pi^-$ where pions have hits in the SVD and IP constraints
- Fit to asymmetry as a function of Δt

 $A_{CP} = S \sin(\Delta m_d \Delta t) + A \cos(\Delta m_d \Delta t)$ $S_{SM} = -\sin 2\phi_1 \approx -0.7$ $A_{SM} = 0$ $S = -0.71 \pm 0.23 \text{ (stat)} \pm 0.05 \text{ (syst)}$ $A = 0.12 \pm 0.16 \text{ (stat)} \pm 0.05 \text{ (syst)}$

First steps with Belle II: flavour tagger and golden mode (see backup)

2) Tree decay: $B \rightarrow Dh (h = \pi/K)$

• Related to determination of γ (see A. Gilman's talk)

colour and CKM suppression

CS

 \bar{u}

 \bar{D}^0

- Important to study factorization and SU(3) assumptions
- New Belle result on

$$R^{D} \equiv \frac{\mathscr{B}(\bar{B}^{0} \to D^{+}K^{-})}{\mathscr{B}(\bar{B}^{0} \to D^{+}\pi^{-})} \simeq \tan^{2}\theta_{C} \left(\frac{f_{K}}{f_{\pi}}\right)^{2} = 0.077 \pm 0.002$$
NNLO prediction
JHEP 2016, 112 (201)

2) Preliminary $B^0 \rightarrow D^-(K^+\pi^-\pi^-)h^+$

- Simultaneous fit to sample separated by particle ID of the h
- R^D , total $B \rightarrow D\pi$ yield (for BF($B \rightarrow D\pi$)) and mis-ID rate all from data

3) Charmless B decay

- Mediated through suppressed $b \rightarrow u$ transition and/or FCNC loop $b \rightarrow d$ and $b \rightarrow s$
 - access to all angles of the unitarity triangle
 - loop sensitivity to new physics
- QCD influence on the relative size and strong phases of amplitudes makes theoretical relation to weak phases difficult
 - SU(3) and isospin relations can help
- **Example:** Isospin combination of $B \rightarrow \rho \rho$ measurements allows determination of α
 - PRL 65, 3381 (1990)
- 63 fb⁻¹ of Belle II data with 6D fit signal extraction
 - FBDT continuum suppression, ΔE , 2 × m_{$\pi\pi$} and 2 × helicity angle

3) A_{CP} in $B^0 \rightarrow K_S \pi^0$

- $K\pi$ puzzle: differences in A_{CP} between isospin related $B \rightarrow K\pi$ decays
- Isospin sum-rule null test [PLB 627, 82 (2005)]

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})} \frac{\mathcal{B}($$

- 63 fb⁻¹ of Belle II data time-integrated measurement with 2D fit to ΔE and M_{bc}
 - BF = (8.5 \pm 1.7 \pm 1.2) \times 10⁻⁶
 - A_{CP} = 0.40 ± 0.45 ± 0.04
 - arXiv:2104.14871
- Key to future improvements in $I_{K\pi}$

14/9/2021

HQL 2021 - CPV Belle and Belle II

Belle (II) outlook

- Belle will continue to exploit its unique data set for further measurements related to CPV
- Belle II is beginning its journey to supersede it
 - $3.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ world record (June 2021)
 - Accumulating ~400 fb⁻¹ by next summer
- To look out for at next HQL
 - combined measurements of Belle + Belle II data sets

Much more on Belle (II): Casarosa, Kaliyar, Bauer, Bennett, Cao, Hayasaka and Dong

BACKUP

1) TDCPV – first steps at Belle II

- Flavour-tagger development
 - two multivariate techniques
 - category-based BDT or
 - deep-learning neural net on the tag side
 - similar performance to each other and to Belle
 - effective tagging efficiency ~30%
 - room for improvement:
 - lepton ID and impact parameter
- First TDCPV measurement
 - BELLE2-NOTE-PL-2020-011
 - 35 fb⁻¹ of data
 - reconstruct $B^0 \rightarrow J/\psi(l^+l^-)K_S^0(\pi^+\pi^-)$
 - sin $2\phi_1 = 0.55 \pm 0.21 \pm 0.04$
 - PDG sin 2 ϕ_1 =0.699 ± 0.017

HQL 2021 - CPV Belle and Belle II 14/9/2021

15

4) CPV in *D* decay

- CPV in charm is highly supressed in SM
- Discovery of direct CPV in $D^0 \rightarrow K^+K^-/\pi^+\pi^-$ by LHCb at 10^{-3} level
 - PRL **122**, 211803 (2019)
- To understand if there is any new physics the long range QCD effects must be controlled
 - Various SU(3) and isospin tests suggested to disentangle these effects
- Singly Cabbibo supressed (SCS) decays with neutrals important for these tests
 - Complementary role to LHCb

4) $D^0 \rightarrow \phi \eta, K^+ K^- \eta, \pi^+ \pi^- \eta$

- 980 fb⁻¹ of Belle data
- $D^{*+} \rightarrow D^0 \pi^+$ slow-pion tag and background suppression $Q = M(\phi \eta \pi^+) - M(\phi \eta) - m_{\pi PDG}$
- The raw asymmetry has three contributions

$$A_{\rm raw} = A_{CP} + A_{\gamma-Z} + A_{\rm slow\,\pi}$$

Corrected by measuring as function of D* polar angle

Corrected with chargedependent control sample

arXiv:2106.04286

accepted by JHEP

 $A_{CP}(D^0 \to \pi^+ \pi^- \eta) = [0.9 \pm 1.2 \,(\text{stat}) \pm 0.4 \,(\text{syst})]\%,$ $A_{CP}(D^0 \to K^+ K^- \eta) = [-1.4 \pm 3.3 \,(\text{stat}) \pm 1.0 \,(\text{syst})]\%$ $A_{CP}(D^0 \to \phi \eta) = [-1.9 \pm 4.4 \,(\text{stat}) \pm 0.6 \,(\text{syst})]\%$