Strong-phase inputs for CPV measurements at LHCb and Belle II

Yu Zhang for the BESIII Collaboration

HQL2021, Warwick, 14/09/2021

Strong-phase measurements at BESIII $D \to K\pi\pi\pi/K\pi\pi^0$ [JHEP 05 (2021) 164] $D \to K\pi$ [PLB 05, 071 (2014)] $D \to K_S^0 h^+ h^-$ [PRD 101 (2020) 112002; PRD 102 (2020) 052008]

Strong-phase inputs for indirect charm CPV

Future prospects at BESIII

Summary

- CKM matrix, only source of CP violation in the SM
- CKM angles are large $(\mathcal{O}(1))$ in the *b* sector \Rightarrow direct *CP* violation

LHCb combination

- Determined in tree-level B decays, eg. $B \to DK$
- No interference from NP effects
- Large experimental uncertainties
 - Statistics, systematics
 - External inputs

- Measurement of the interference between the two paths depends on the B and D decay parameters ⇒ External inputs of strong phase and associated parameters in D decays
- Allow extracting γ using different D decays:
 - DCS decays (eg. $K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$): "ADS" [PRL 78 (1997) 3257; PRD 63 (2001) 036005] $\Rightarrow \delta_D$, R_f
 - Self-conjugate decays (eg. $K_S^0 h^+ h^-$): "BPGGSZ" [PRD 68 (2003) 054018; PRD 67 (2003) 071301; A. Bondar] $\Rightarrow c_i, s_i$
 - (Quasi-)*CP* eigenstates (eg. h^+h^-): "GLW" [PLB 265 (1991) 172; PLB 253 (1991) 483] \Rightarrow *CP* fraction F^+ ; Others...

ADS method with multi-body D decays

- Both DCS and CF processes contribute to $B^{\mp} \rightarrow (K^{\pm} 3\pi)_D K^{\mp}$
- Phase-space integrated decay rate

$$\Gamma(B^{\mp} \to (K^{\pm} 3\pi)_D K^{\mp}) \propto r_{K3\pi}^2 + r_B^2 + 2r_B R_{K3\pi} r_{K3\pi} \cos(\delta_B \pm \gamma - \delta_D^{K3\pi})$$

- $R_S e^{-i\delta_D^S} = \frac{\int A_S^*(\mathbf{x}) A_{\bar{S}}(\mathbf{x}) d\mathbf{x}}{A_S A_{\bar{S}}}$, coherence factor and strong phase
- R indicates the intermediate resonances, 0 < R < 1 for $K3\pi$ and $K\pi\pi^0,~R=1$ for $K\pi$

Strong-phase measurement with QC $D\bar{D}$

• Quantum correlated C-odd $D\bar{D}$ produced at BESIII

CP eigenstates

Flavour tag Self-coniugate

 $e^+e^- \rightarrow \psi(3770) \rightarrow D\bar{D}$

- 10597,000 neutral DD
 [CPC 42 (2018) 083001]
- "Double-tag" method: reconstruct both D&D

•
$$M_{\rm BC} = \sqrt{{\rm E}_{\rm beam}^2/c^4 - |{f p}_{\bar D}^2|/c^2}$$

•
$$\Delta \mathbf{E} = \mathbf{E}_D - \mathbf{E}_{\text{beam}}$$

• Compare the double tag yields w/w.o. quantum correlation

$$\begin{split} \Gamma_{\rm QC}(S|T) &= \Gamma_0 A_S^2 A_T^2 \left[(r_D^S)^2 + (r_D^T)^2 - 2R_S R_T r_D^S r_D^T \cos\left(\delta_D^T - \delta_D^S\right) \right] \\ \Gamma(ST) &= \Gamma_0 A_S^2 A_T^2 \left[(r_D^S)^2 + (r_D^T)^2 \right] \end{split}$$

Double tag events

• Example fits to double tag events

- · Clean background in fully reconstructed events
- K_L^0 can be reconstructed with the missing mass M_{miss}^2 recoiled against the tagged D and particles in the signal side

Strong-phase measurements at BESIII

CP observables

- ρ_{CP} , the ratio of background-subtracted and efficiency-corrected yields and expectations w.o. QC, differ from 1
- Other tags also contribute: Like-sign flavour tags (eg. $K^+3\pi$ vs $K^+3\pi$); $K^0_S \pi^+ \pi^-$ tag (phase variations over Dalitz plane)

Strong-phase measurements at BESIII

Strong-phase difference and coherence factor ₩SII

- Average δ_D and R in the whole phase space in $K3\pi$ and $K\pi\pi^0$
- Significant improvement compared to CLEO-c results [PLB 757 (2016) 520]

Binned $\delta_D^{K3\pi}$ and $R_{K3\pi}$

• Sensitivity on γ can be improved measuring it in $D \to K3\pi$ bins

- Model-independent measurement, only binning method depends on the DCS and CF model of $D\to K3\pi$ $_{\rm [EPJC~78~(2018)~443]}$

Strong-phase measurements at BESIII

Results of binned $\delta_D^{K3\pi}$ and $R_{K3\pi}$

Significant improvement compared to CLEO-c results [PLB 802 (2020) 135188]

Strong-phase measurements at BESIII

Determination of $\cos \delta_D^{K\pi}$ at **BESIII**

•
$$\mathcal{A}_{K\pi}^{CP} = \frac{2r_D^{K\pi}\cos\delta_{K\pi}+y}{1+R_{WS}} = \frac{\mathcal{B}_{D^{S-}\to K^-\pi^+}-\mathcal{B}_{D^{S+}\to K^-\pi^+}}{\mathcal{B}_{D^{S-}\to K^-\pi^+}+\mathcal{B}_{D^{S-}\to K^-\pi^+}}$$

• CP tagged $K\pi$ events

DT mode	$n_{K\pi,S\pm}$
$K\pi$, K^+K^-	1671 ± 41
$K\pi$, $\pi^+\pi^-$	610 ± 25
$K\pi, K_{S}^{0}\pi^{0}\pi^{0}$	806 ± 29
$K\pi$, $\pi^{0}\pi^{0}$	213 ± 14
$K\pi$, $\rho\pi^0$	1240 ± 35
$K\pi$, $K^0_S\pi^0$	1689 ± 41
$K\pi$, $K^0_S\eta$	230 ± 15
$K\pi$, $K^0_S\omega$	747 ± 27
	[PLB 05 071 (2014)]

- $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$
- $\cos \delta_{K\pi} = 0.81^{+0.22+0.07}_{-0.18-0.05}$ [CLEO-c, PRD 86 (2012) 112001]

•
$$\delta_{K\pi} = (187.2^{+7.9}_{-9.2})^{\circ}$$
 [HFLAV, summer2021]

[PLB 05, 071 (2014)]

• Future prospects: explore how much could be gained for $\delta_{K\pi}$ by including other CP tags and $K^0_{S}h^+h^-$ tags with binned method

Phase-difference parameters in $D \to K_S^0 h^+ h^- \mathbb{H}$

- Divide $D \to K^0_S \pi^+\pi^-$ Dalitz plot into bins \Rightarrow full potential to γ measurement
- Binned $B \rightarrow DK$ yields:

 $N_{+i}^{\pm} = h_{B^{\pm}} \left[F_{\mp i} + \left((x_{\pm}^{DK})^2 + (y_{\pm}^{DK})^2 \right) F_{\pm i} + 2\sqrt{F_i F_{-i}} (x_{\pm}^{DK} c_i \mp y_{\pm}^{DK} s_i) \right]$ $(x_{\pm} = r_B \cos(\delta_B \pm \gamma), y_{\pm} = r_B \sin(\delta_B \pm \gamma))$

• Require input of the bin-averaged strong-phase parameters $c_i = \cos(\Delta \delta_D)$, $s_i = \sin(\Delta \delta_D)$

Strong-phase measurements at BESIII

Measurement of c_i and s_i in $D \to K^0_S h^+ h^-$

- CP tags (eg. $\pi\pi\pi^0$, $K^0_S\pi^0$): different behaviour in Dalitz plot for CP-even/odd events $\Rightarrow c_i$
- Self tags (tagged by itself) $\Rightarrow c_i, s_i$
- $K^0_S h^{'+} h^{'-} / K^0_L h^{(')+} h^{(')-}$ tags $\Rightarrow c_i, \ s_i$ and $c_i', \ s_i'$

Results of c_i and s_i at BESIII

- Global analysis of the flavour, CP and self-tagged $K^0_S h^+ h^-$ events
- $K_S^0 K^+ K^-$ is similarly studied with 2 bins due to low statistics

- Significant improvement compared to CLEO-c measurements
- · Results with more binning methods can be found in the publications

Impact on γ measurement

- Improvement of the γ sensitivity with only CLEO-c inputs $\sim 3^\circ$ [PRD 82, 112006 (2010)]
- BESIII uncertainty of $K_S^0 \pi^+ \pi^-$ contributes around 1° to the latest LHCb measurement, leading to the best single measurement of γ (5°) [JHEP 02 (2021) 169]

Strong-phase inputs for CPV in charm decays ₩SII

- Indirect *CP* violation due to charm mixing and interference of mixing and decay
- Non-vanishing ϕ and |q/p| 1 leads to observation

- $D \rightarrow K^0_S \pi^+ \pi^-$
- Not observed yet but significantly constrained
- c_i, s_i input from BESIII contributes to non-negligible systematics
- Other strong-phase measurements could contribute as inputs to charm mixing and *CPV* studies

[PRD 99 (2019) 012007; PRD 91 (2015) 094032] [PLB 701 (2011) 353]

Strong-phase measurements at BESIII $D \to K\pi\pi\pi/K\pi\pi^0$ [JHEP 05 (2021) 164] $D \to K\pi$ [PLB 05, 071 (2014)] $D \to K_{\rm S}^0 h^+ h^-$ [PRD 101 (2020) 112002; PRD 102 (2020) 052008

Strong-phase inputs for indirect charm CPV

Future prospects at BESIII

Summary

Other decays measured by CLEO-c

• 0.818 ${\rm fb}^{-1}~\psi(3770)$ CLEO-c data, BESIII can provide improved measurements with about 3.5 times data

• Improvement in $K_S^0 \pi^+ \pi^- \pi^0$ shall be of interest for Belle II as its \mathcal{B} reaches $(5.2 \pm 0.6)\%$ and it's challenging in LHCb

Future prospects at **BESIII**

	Decay mode	Quantity of interest	
√	$D \to K^0_S \pi^+ \pi^-$	c_i and s_i	
√	$D \rightarrow K_S^0 K^+ K^-$	c_i and s_i	
\checkmark	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	R,δ	
	$D \to K^+ K^- \pi^+ \pi^-$	c_i and s_i	
	$D \to \pi^+ \pi^- \pi^+ \pi^-$	F_+ or c_i and s_i	
√	$\frac{D \to K^{\pm} \pi^{\mp} \pi^0}{D \to K^0_S K^{\pm} \pi^{\mp}}$	$rac{R,\delta}{R,\delta}$	
	$D \to \pi^+ \pi^- \pi^0$	F_+	
	$D \to K^0_S \pi^+ \pi^- \pi^0$	F_+ or c_i and s_i	
	$D \rightarrow K^+ K^- \pi^0$	F_+	
\checkmark	$D \to K^{\pm} \pi^{\mp}$	δ	

- Limited by statistics: $\circ \pi^+\pi^-\pi^+\pi^ \circ K^+K^-\pi^+\pi^-$
- Inputs for Belle II (challenging for LHCb):

$$\circ K^0_S \pi^+ \pi^- \pi^0 \\ \circ K \pi \pi^0$$

$$\circ \pi^{+}\pi^{-}\pi^{0}$$
, $K^{+}K^{-}\pi^{0}$

BESII

- BESIII provides unique quantum correlated $D\bar{D}$ data to measure the strong-phase parameters in D decays as inputs to LHCb and Belle II for
 - $\circ~$ CKM angle γ measurement in the b sector
 - $\circ~$ Indirect CP violation and mixing in neutral D meson decays
- Decays have been studied at BESIII:
 - $\circ~K^0_S h^+ h^-$, $K3\pi$, $K\pi\pi^0$, $K\pi$
- 20 ${
 m fb}^{-1}$ ψ (3770) data at BESIII in the near future [CPC 44, 040001 (2020)]
 - $\circ~$ Improve the current measurement, eg. $c_i~,s_i$ and $\delta_D^{K3\pi}$ and $R_{K3\pi}$
 - $\,\circ\,$ Low statistics decays, eg. $\pi^+\pi^-\pi^+\pi^+,\,K^+K^-\pi^+\pi^+$

Thanks!

Back-up: BEPCII

[ISABELLA Charm20]

Back-up: BESIII

Nucl. Instr. Meth. A614, 345 (2010)

Back-up: γ sensitivity at LHCb and Belle II

Back-up: $K3\pi/K\pi\pi^0$ **DT modes**

[JHEP 05 (2021) 164]

Back-up: $K3\pi/K\pi\pi^0$ **DT modes**

Back-up: Combination of $\delta_D^{K3\pi}$ and $R_{K3\pi}$

Back-up: Combination of binned $\delta_D^{K3\pi}$ and $R_{K3\pi}$

Back-up: Determination of CP fraction at CLEO-c

- (Quasi)*CP* tags: $M(f|g) = \mathcal{ZB}_f \mathcal{B}_g \left[1 (2F_+^f 1)(2F_+^g 1) \right]$
- $K_{S,L}^0 \pi^+ \pi^-$ tags: $M_i = h \left[K_i + K_{-i} (2F_+ 1)2c_i \sqrt{K_i K_{-i}} \right]$
- [PLB 05, 043 (2015)]
- Input to γ measurement [PRD 91, 112014 (2015)]

Tag	$F_{+}^{\pi^{+}\pi^{-}\pi^{0}}$	$F_{+}^{K^{+}K^{-}\pi^{0}}$	$F_{+}^{\pi^{+}\pi^{-}\pi^{+}\pi^{-}}$
$\begin{array}{c} CP \text{ eigenstates} \\ K^0_{S,L}\pi^+\pi^- \\ \pi^+\pi^-\pi^0 \end{array}$	0.968(17)(6) 1.014(45)(22)	0.731(58)(21) 0.734(106)(54)	$\begin{array}{c} 0.754(31)(21) \\ 0.737(49)(24) \\ 0.695(50)(21) \end{array}$
Combined	0.973 ± 0.017	0.732 ± 0.055	0.737 ± 0.028

BESIII data can improve these measurements