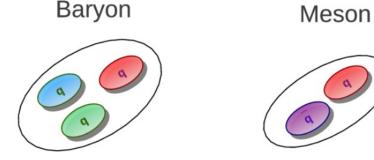


HQL2021 – The XV International Conference on Heavy Quarks and Leptons

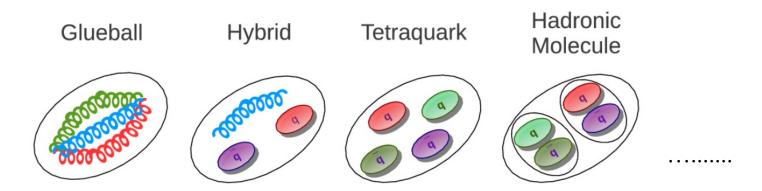
New Results on Light Hadron Spectroscopy from BESIII

Isabella Garzia, University of Ferrara and INFN
On behalf of the BESIII Collaboration

September 13-17, 2021 University of Warwich - UK


Outline

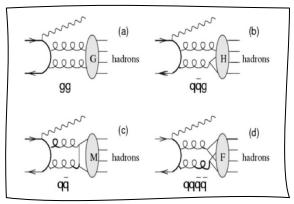
- ✓ INTRODUCTION:
 - Light hadron spectroscopy
 - The BESIII experiment
- ✓ Physics highlights
 - X(18xx) states
 - Observation of X(2370) in $J/\psi \rightarrow \gamma KK\eta$ and search for X(2370) $J/\psi \rightarrow \gamma \eta \eta \eta$ decays
 - Strangeonia spectrum and $\phi(2170)$ @ BESIII
 - Partial Wave Analysis: $J/\psi \rightarrow K^+K^-\pi^0$ and $\psi(3686) \rightarrow KK\eta$
- ✓ Summary and Conclusions


Hadron Spectrum

Naïve Quark Model:

conventional hadrons contain two or three quarks

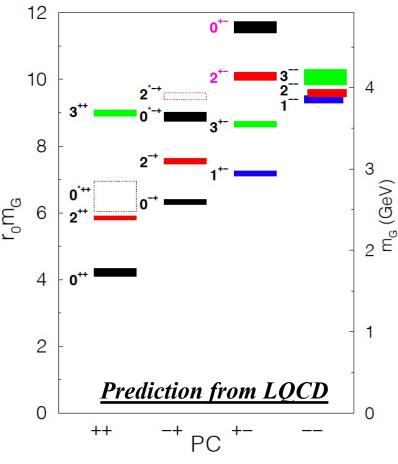
... <u>but</u> QCD allows also different combinations of quarks and gluons: <u>EXOTIC</u> hadrons


A lot of exotic states observed experimentally, but their nature is still far from being understood!!!

Hadron spectroscopy: establish the spectrum and study the exotic hadrons properties

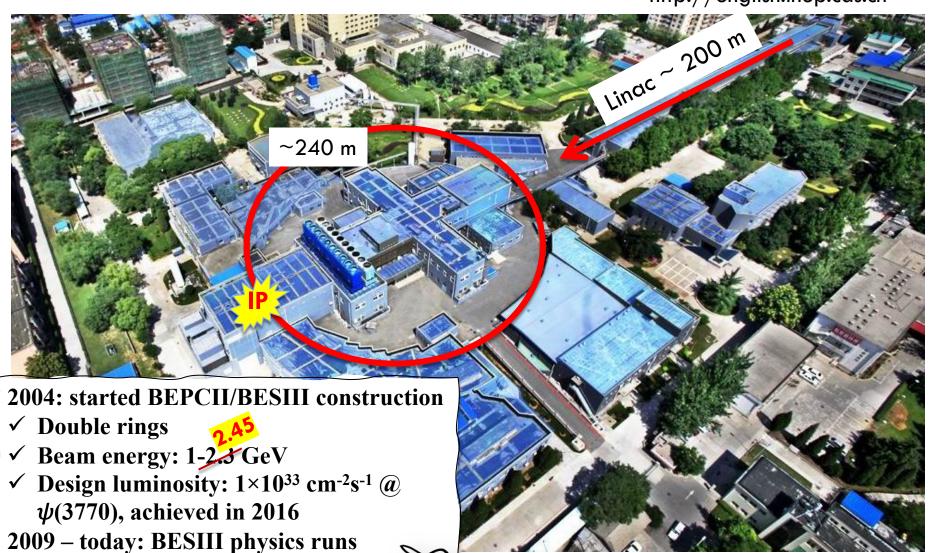
Hunting for glueballs and new form of hadrons

➤ Charmonium radiative decays is the ideal laboratory for light glueballs and hybrids hadron studies

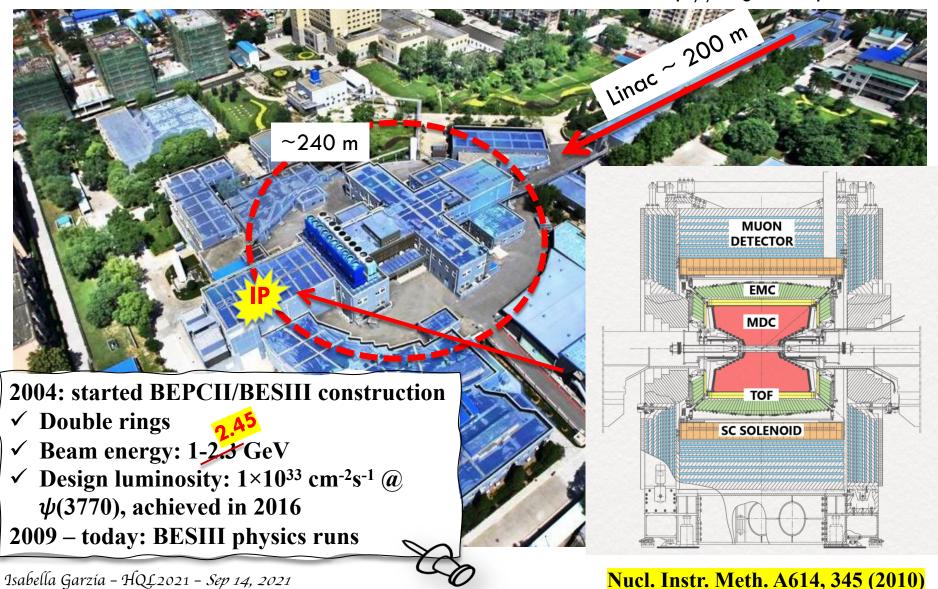

- ✓ Gluon-rich process
- ✓ Clean process
- ✓ High statistics

- > Glueballs can mix with ordinary quarkantiquark states
- \triangleright Predicted large BFs for glueballs in J/ ψ radiative decays

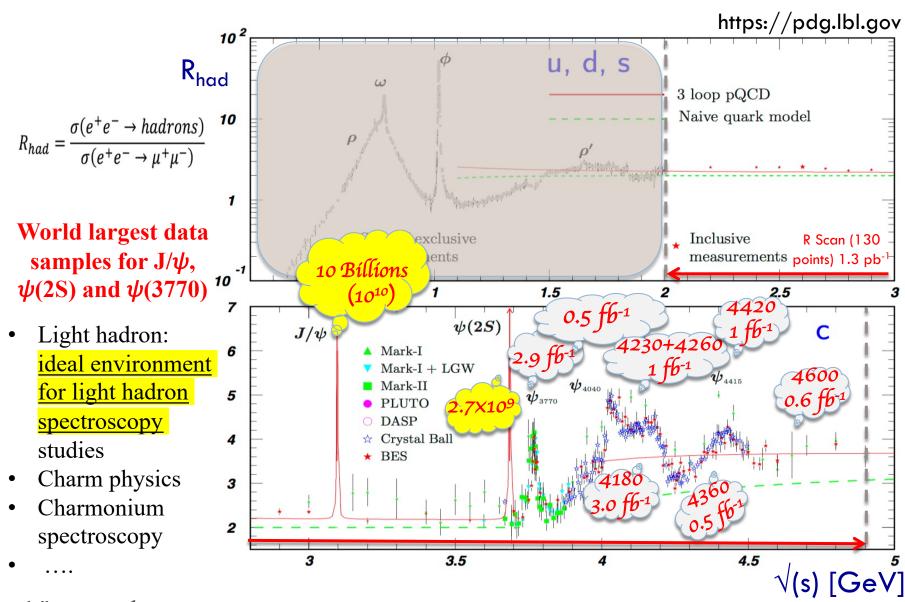
PRL110, 021601
$$\Gamma(J/\psi \to \gamma G_{0^{++}})/\Gamma_{\text{tot}} = 3.8(9) \times 10^{-3}$$


PRL111, 091601
$$\Gamma(J/\psi \to \gamma G_{2^{++}})/\Gamma_{\text{tot}} = 1.1(2)(1) \times 10^{-2}$$

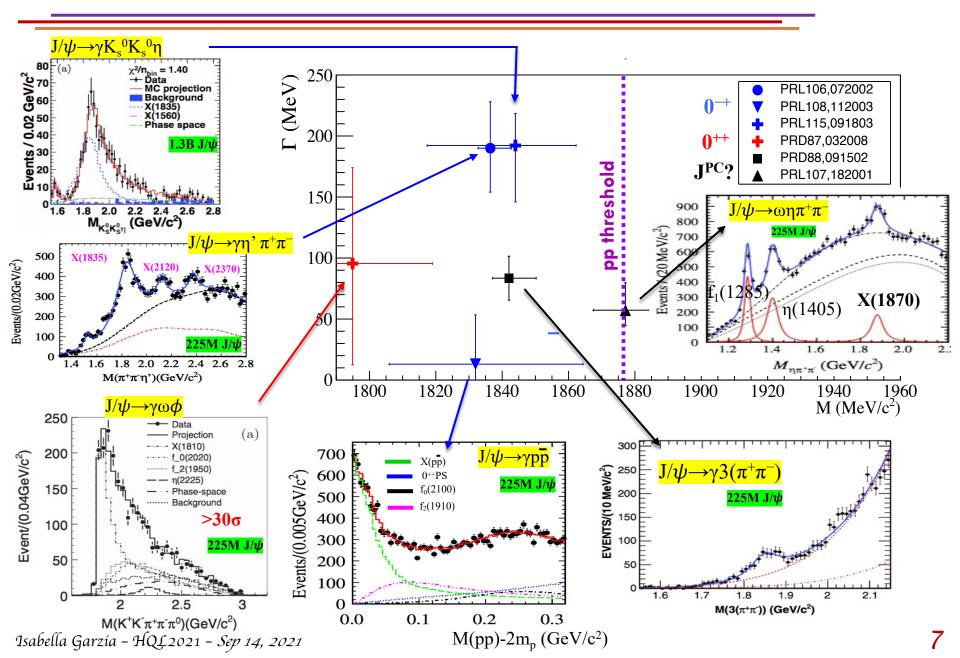
https://doi.org/10.1142/S0218 301309012124

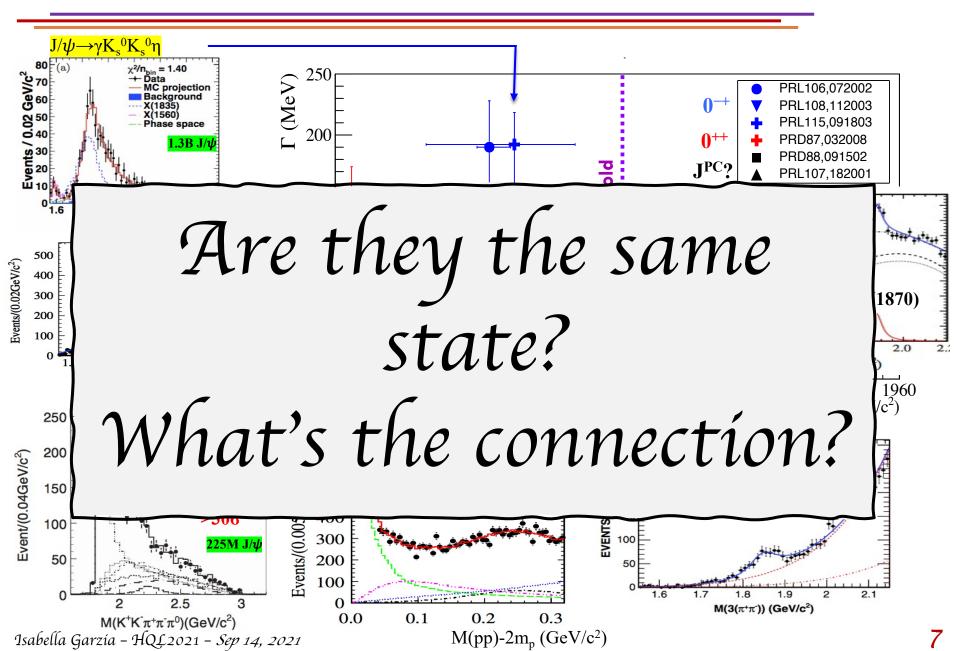

Beijing Electron Positron Collider II

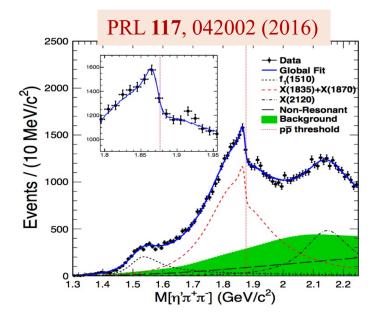
http://english.ihep.cas.cn



Beijing Electron Positron Collider II


http://english.ihep.cas.cn


BESIII dataset


X(18xx) between 1.8-1.9 GeV

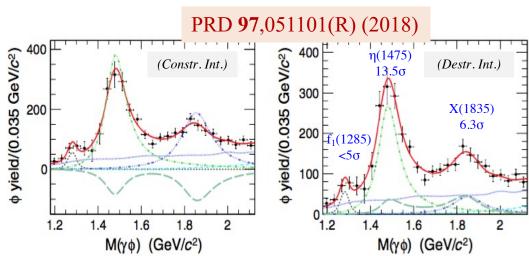
X(18xx) between 1.8-1.9 GeV

Latest Results on X(1835)

$1.09\times10^9 \text{ J/}\psi$ @ BESIII

$$J/\psi \rightarrow \gamma \eta' \pi^- \pi^+$$

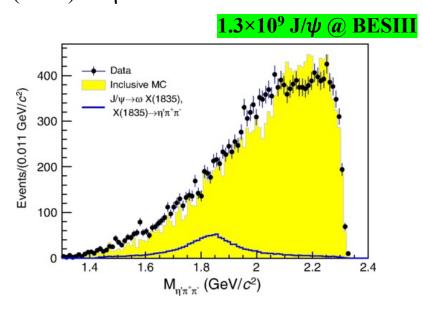
Significant distortion of the η ' $\pi^-\pi^+$ line shape near the ppbar mass threshold

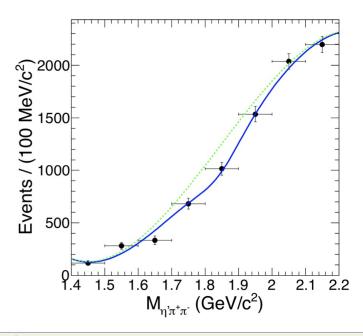

Two fit models are taken into account and both support the existence of a $p\bar{p}$ moleculelike or bound state

$1.3\times10^9 \text{ J/}\psi$ @ BESIII

 $J/\psi \rightarrow \gamma \gamma \phi$: two structures corresponding to $\eta(1475)$ and X(1835) are observed

- X(1835) and $\eta(1475)$: $J^{PC} = 0^{-+}$ assignment favored
- Sizable ss component in X(1835)
 - more complicated than a pure $N\overline{N}$ state


Solution	Resonance	$m_R ({\rm MeV}/c^2)$	Γ (MeV)
I	$\eta(1475)$	$1477 \pm 7 \pm 13$	$118 \pm 22 \pm 17$
(Destr. Int.		$1839\pm26\pm26$	$175 \pm 57 \pm 25$
II	$\eta(1475)$	$1477 \pm 7 \pm 13$	$118\pm22\pm17$
(Constr. Int	X(1835)	$1839\pm26\pm26$	$175\pm57\pm25$



Search for X(1835) in other decay modes

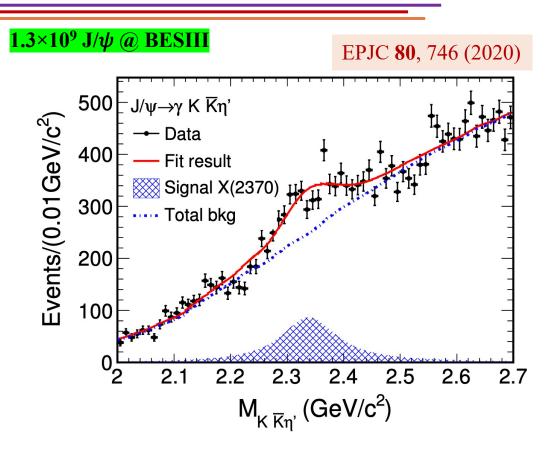
• J/ ψ $\rightarrow \omega \eta$ ' $\pi^+\pi^-$ hadronic decay and search for X(1835) $\rightarrow \eta$ ' $\pi^+\pi^-$

PRD **99**, 071101 (R) (2019)

- No obvious sign of X(1835)'s existence
- Large gluon component? [PRD74,034019]

$$\mathcal{B}(J/\psi \to \omega \eta' \pi^+ \pi^-) = (1.12 \pm 0.02 \pm 0.13) \times 10^{-3}$$

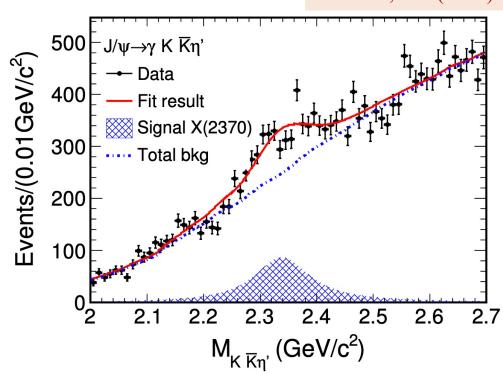
$$\mathcal{B}(J/\psi \to \omega X(1835), \ X(1835) \to \eta' \pi^+ \pi^-) < 6.2 \times 10^{-5}$$


@ 90% C.L.

The puzzle is still not complete

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta$

- X(2120) and X(2370) states observed in the $\pi^-\pi^+\eta^+$ invariant mass spectra (PRL106,072002)
- The **X(2370)** measured mass is consistent with the pseudoscalar glueball candidate predicted by LQCD calculation (PRD**73,**014516)
- Simulataneus fit performed for two decay η' modes


First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta$

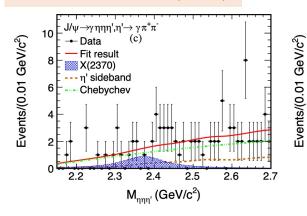
- X(2120) and X(2370) states observed in the $\pi^-\pi^+\eta^+$ invariant mass spectra (PRL106,072002)
- The **X(2370)** measured mass is consistent with the pseudoscalar glueball candidate predicted by LQCD calculation (PRD73,014516)
 - Simulataneus fit performed for two decay η' modes
 - \triangleright No evidence of X(2120) is found

$$\mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K^+ K^- \eta') < 1.49 \times 10^{-5}$$

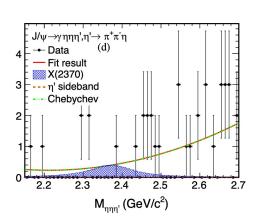
 $\mathcal{B}(J/\psi \to \gamma X(2120) \to \gamma K_S^0 K_S^0 \eta') < 6.38 \times 10^{-6}$

$1.3 \times 10^9 \,\mathrm{J/}\psi$ @ BESIII

EPJC **80**, 746 (2020)



\triangleright Clear X(2370) signal observed with significance of about 8.3 σ


$$\begin{split} M_{X(2370)} &= 2341.6 \pm 6.5 \pm 5.7 \; \mathrm{MeV}/c^2 \quad \Gamma_{X(2370)} = 117 \pm 10 \pm 8 \; \mathrm{MeV} \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K^+ K^- \eta') &= (1.79 \pm 0.23 \pm 0.65) \times 10^{-5} \\ \mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma K_S^0 K_S^0 \eta') &= (1.18 \pm 0.32 \pm 0.39) \times 10^{-5} \end{split}$$

Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta$

PRD **103**, 012009 (2021)

$1.3\times10^9 \text{ J/}\psi$ @ BESIII

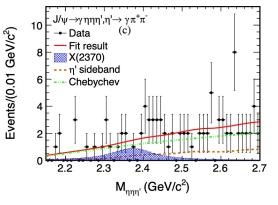
Branching ratios prediction for the decay of pseudoscalar glueball with M~2.37 GeV into three pseudoscalar mesons (PRD **87**,054036 (2013))

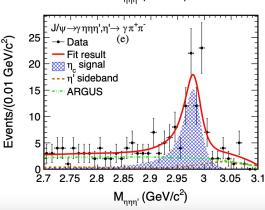
$$\Gamma_{G \to \eta \eta \eta'} / \Gamma_G^{tot} = 0.00082$$

$$\Gamma_{G \to KK\eta'} / \Gamma_G^{tot} = 0.011$$

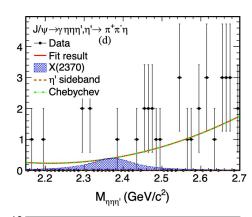
$$\Gamma_{G \to \pi \pi \eta'} / \Gamma_G^{tot} = 0.090$$

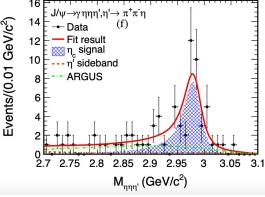
\triangleright No obvious signal of X(2370)


Simultaneous unbinned maximum likelihood fit to the $\eta\eta\eta$ ' is performed and the 90% C.L. upper limit is calculated


$$\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma \eta \eta \eta') < 9.2 \times 10^{-6}$$

(it does not contradict PRD 87,054036)


Search for X(2370) in $J/\psi \rightarrow \gamma \eta \eta \eta$


PRD **103**, 012009 (2021)

$1.3\times10^9 \text{ J/}\psi$ @ BESIII

Branching ratios prediction for the decay of pseudoscalar glueball with M~2.37 GeV into three pseudoscalar mesons (PRD **87**,054036 (2013))

$$\Gamma_{G \to \eta \eta \eta'} / \Gamma_G^{tot} = 0.00082$$

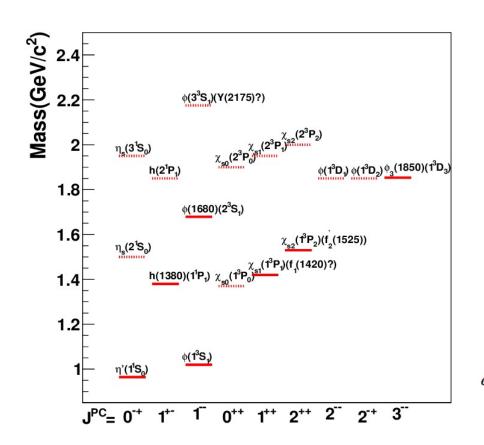
$$\Gamma_{G \to KK\eta'} / \Gamma_G^{tot} = 0.011$$

$$\Gamma_{G \to \pi \pi \eta'} / \Gamma_G^{tot} = 0.090$$

\triangleright No obvious signal of X(2370)

Simultaneous unbinned maximum likelihood fit to the $\eta\eta\eta$ ' is performed and the 90% C.L. upper limit is calculated

$$\mathcal{B}(J/\psi \to \gamma X(2370) \to \gamma \eta \eta \eta') < 9.2 \times 10^{-6}$$

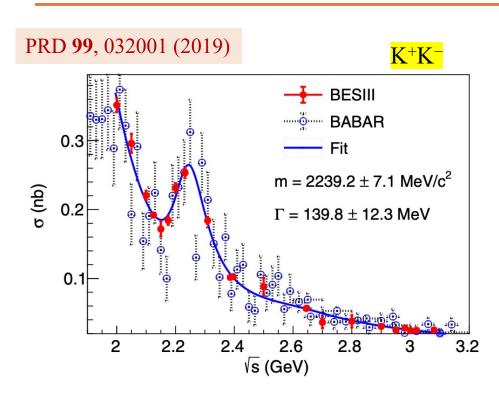

=vents/(0.01 GeV/c²

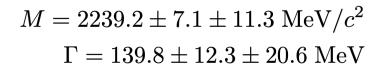
(it does not contradict PRD 87,054036)

$$\mathcal{B}(J/\psi \to \gamma \eta_c) \cdot \mathcal{B}(\eta_c \to \eta \eta \eta') = (4.86 \pm 0.62 \pm 0.45) \times 10^{-5}$$

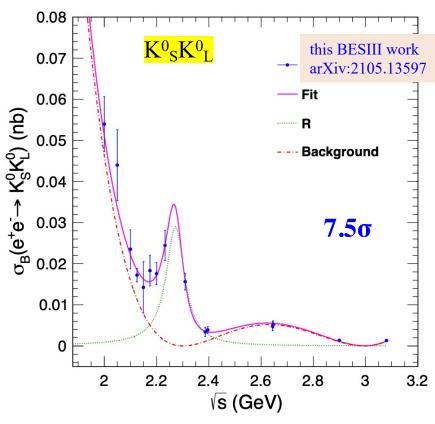
FIRST OBSERVATION in the ηηη' invariant mass spectra

Strangeonía Spectrum



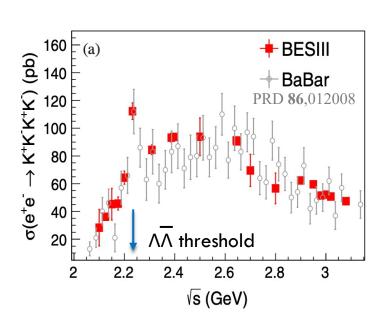

Strangeonium mesons

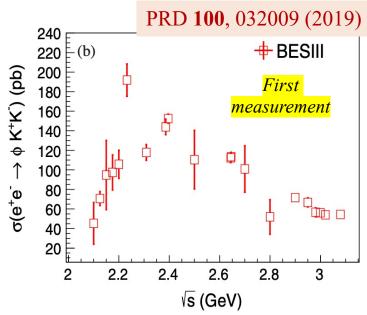
- Bridge between light quarks (u,
 d) and heavy quarks (c, b)
- Study of exotic states Only few states observed:
- Small BR
- Large Γ


$$e^{+}e^{-} \Rightarrow \begin{cases} Y(2175) \to \phi(1020)\pi^{+}\pi^{-} & \text{strange,} \\ Y(4260) \to J/\psi\pi^{+}\pi^{-} & \text{charm,} \\ \Upsilon(10860) \to \Upsilon(1S, 2S)\pi^{+}\pi^{-} & \text{bottom,} \end{cases}$$

- $\phi(2170)/Y(2175)$ observed for the first time in the ϕf_0 channel by BaBar (PRD 74,091103; PRD 76,031102)
 - BESIII: PRL**100**,102003(2008)
 - Belle: PRD**80**,031101 (2009)

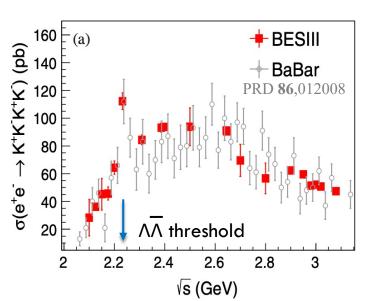
Consistent with BaBar PRD **88**,032012 (2018); PRD **92**,072008 (2015);

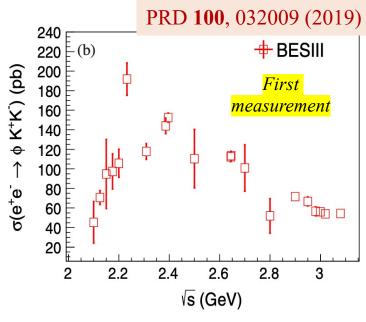



$$M = 2273.7 \pm 5.7 \pm 19.3 \text{ MeV}/c^2$$
,
 $\Gamma = 86 \pm 44 \pm 51 \text{ MeV}$,

Consistent with BaBar PRD **101**,012011(2020)

Resonant structure in the 4K spectra, but difficult to disentangle from other final state

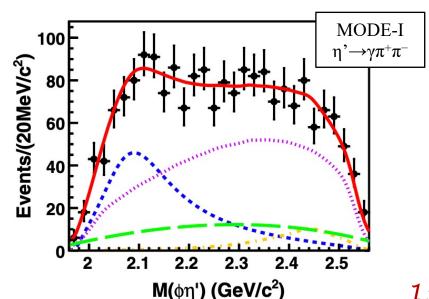

 ϕ (2170) or new strangeonium state?



Resonant structure in the 4K spectra, but difficult to disentangle from other final state

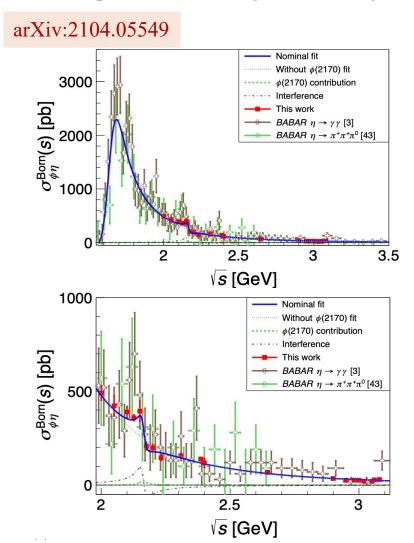
 $\phi(2170)$ or new strangeonium state?

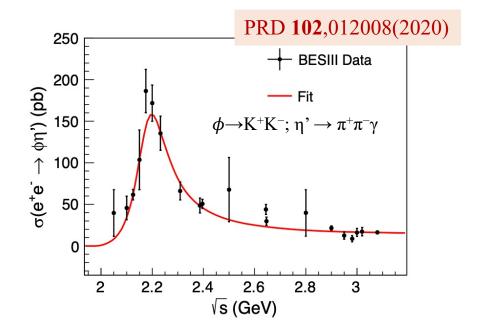
PRD 99, 112008 (2019) - 1.3×10^9 J/ ψ events


 $J/\psi \rightarrow \phi \eta \eta$

- Evidence of a structure in the $\phi\eta$ ' mass spectra
- Distribution of η polar angle in the J/ ψ rest frame used to investigate the J^P assignment

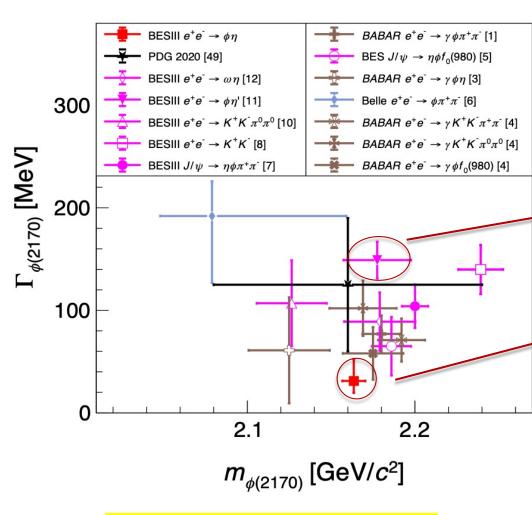
Significance of structure: 4.4σ for $J^P = 1^-$ and 3.8 $for(J^P = 1)$


no PDG entries


mass 5σ away from that reported on PDG

$e^{+}e^{-}\rightarrow\phi\eta$ and $\phi\eta$

- The ratio between $\phi\eta$ and $\phi\eta$ ' partial width is important observable to access $\phi(2170)$ as a ssg hybrid state
 - partial width larger in the $\phi\eta$ channel by a factor [3-200] w.r.t $\phi\eta$



$$\frac{Br \left[\phi(2170) \to \phi \eta\right] \Gamma_{ee}}{Br \left[\phi(2170) \to \phi \eta'\right] \Gamma_{ee}} = \frac{0.03^{+0.02}_{-0.01}}{1.42^{+0.56}_{-0.46}}$$

Small than prediction of the ssg hybrid model by several order o magnitude

Summary of $\phi(2170)$

The nature of $\phi(2170)$ still not fully understood!

[1] PRD74,091103 [3] PRD77,092002 [4] PRD86,012008 [5] PRL100,102003 [6] PRD80,031101 [7] PRD91,052017 [8] PRD99,031001 [10] PRL124,112001 [11] PRD102,012008 [12] PLB813,136059

PRD102,012008 ($e^+e^- \rightarrow \phi \eta$)

$$M = 2177.5 \pm 4.8 \pm 19.5 \text{ MeV}/c^2$$

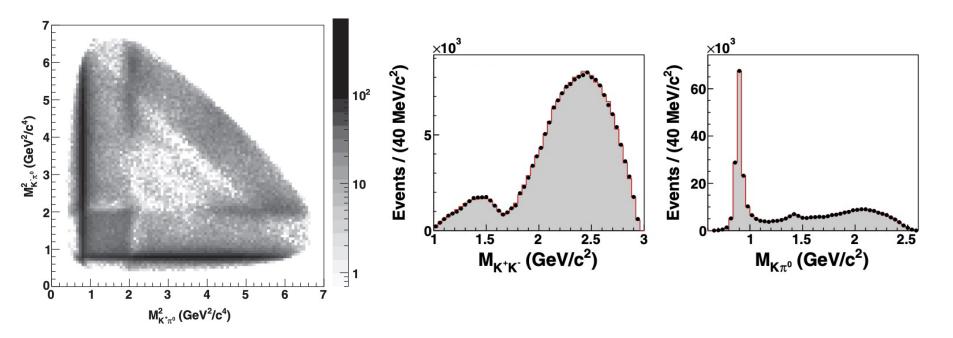
 $\Gamma = 149.0 \pm 15.6 \pm 8.9 \text{ MeV}$

arXiv:2104.05549 ($e^{+}e^{-}\rightarrow\phi\eta$)

$$M = 2163.5 \pm 6.2 \pm 3.0 \text{ MeV}/c^2$$

 $\Gamma = 31.1^{+21.1}_{-11.6} \pm 1.1 \text{ MeV}$

What is the $\phi(2170)$? Many interpretation


- ssg hybrid
- 2^3D_1 or 3^3S_1
- tetraquark
- molecular state $\Lambda\Lambda$
- $\phi f_0(980)$ resonance with FSI
- Three body system ϕ KK

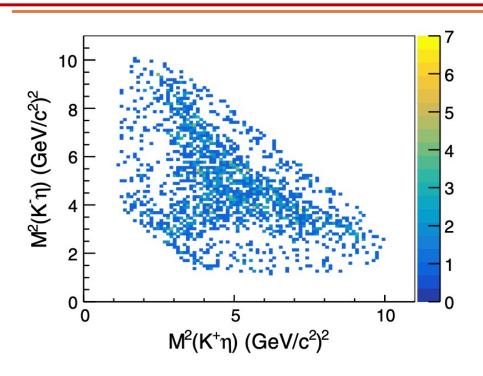
PWA of $J/\psi \rightarrow K^+K^-\pi^0$

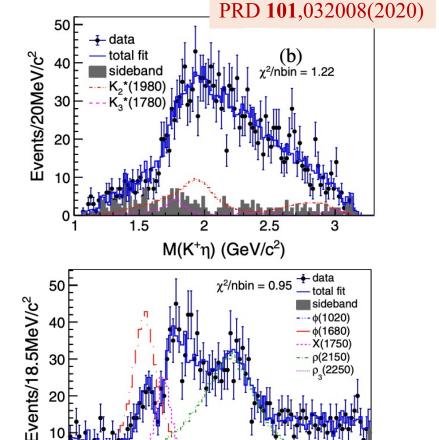
Partial Wave Analysis (PWA) is a powerful tool to study hadron spectra and to search for glueball and exotic states in J/ψ radiative decays

~225×10⁶ J/ψ @ BESIII

PRD **100**,032004(2019)

Isobar model: the amplitude is parameterized as a sum of sequential quasi-two-body decay process [EPJA16,537(2003)]


PWA of $J/\psi \rightarrow K^+K^-\pi^0$


PRD **100**,032004(2019)

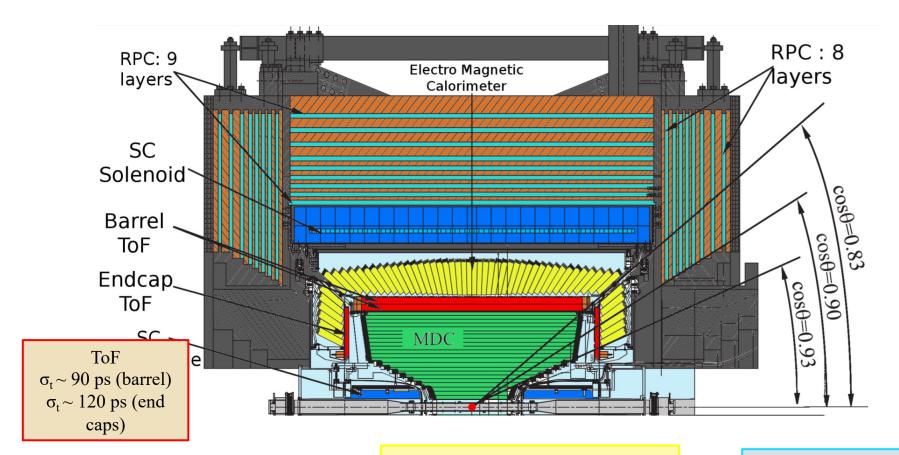
J^{PC}	PDG	$M (\mathrm{MeV}/c^2)$	$\Gamma ({ m MeV}/c^2)$	b (%)	_	
1-	$K^*(892)^{\pm}$	$893.6 \pm 0.1^{+0.2}_{-0.3}$	$46.7 \pm 0.2^{+0.1}_{-0.2}$	$93.4 \pm 0.4^{+1.8}_{-5.8}$		×10 ³
1-	$K^*(1410)^{\pm}$	1380*	176*	0.26 ± 0.04		ο 60-
1-	$K^*(1680)^{\pm}$	1677*	205*	0.20 ± 0.03		Ž : Q 40-
2+	$K_2^*(1430)^{\pm}$	$1432.7 \pm 0.7^{+2.2}_{-2.3}$	$102.5 \pm 1.6^{+3.1}_{-2.8}$	$9.4 \pm 0.1^{+0.8}_{-0.5}$		7) / 8
2^+	$K_2^*(1980)^{\pm}$	$1868 \pm 8^{+40}_{-57}$	$272 \pm 24^{+50}_{-15}$	$0.38 \pm 0.04^{+0.22}_{-0.05}$		Events / (40 MeV/c²)
3-	$K_3^*(1780)^{\pm}$	1781*	203*	0.16 ± 0.02		и 0 1 1.5 2 2.5
4+	$K_4^*(2045)^{\pm}$	$2090 \pm 9^{+11}_{-29}$	$201 \pm 19^{+57}_{-17}$	$0.21 \pm 0.02^{+0.10}_{-0.05}$		M _{Kπ⁰} (GeV/c ²)
3-	Nonresonant	•••	•••	~1.5%		×10-
						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
J^{PC}	M (MeV/c	Γ (Me	V/c^2)	b (%)		Events / (40 MeV/c²)
1	$1651 \pm 3^{+}_{-}$	$^{16}_{6}$ 194 \pm	8^{+15}_{-7}	$1.83 \pm 0.11^{+0.19}_{-0.17}$), st
1	$2039 \pm 8^{+}_{-}$	$\frac{36}{18}$ 196 ±	23^{+25}_{-27}	$0.23 \pm 0.04^{+0.07}_{-0.06}$		Pe Pe
						01 1.5 2 2.5 3 M _{K+K-} (GeV/c ²)

- Dominant contribution from K*(892)
- First observation of $K_2^*(1980)$ and $K_4^*(2045)$ in J/ψ decays
- Two clear $J^{PC}=1^{--}$ structures observed in K^+K^- mass spectrum: possible relation with $\omega(1650)$ and $\rho(2150)$

PWA of $\psi(3686) \rightarrow KK\eta$

 $M(K^+K^-)$ (GeV/c²)

- Observation of $\phi(1680)$ in the KK mass spectra
- 1⁻⁻ state needed to describe the dip around 1.7 GeV/c^2 in the KK mass spectra (X(1750)? but not excluded the possibility to be the $\rho(1700)$)
- A broad structure around 2.2 GeV/ c^2 is observed, either $\phi(2170)$ or $\rho(2150)$?


Conclusions

- $> J/\psi$ decay provides an excellent laboratory to study light hadron decays
 - Search for glueball and exotic states
- > 10 billion of J/\psi data collected at BESIII
 - This huge data sample allows to study light meson decays with unprecedent statistics: unique opportunity to map the light hadron spectroscopy
 - More interesting results are expected
- ➤ More data will be collected in the next years
 - More studies in the strangeonium sector
 - New PWA
 - •

Back-up slídes

The BESIII Detector

Nucl. Instr. Meth. A614, 345 (2010)

$$\begin{split} & \text{Drift Chamber} \\ \sigma_{r\phi} \sim 130 \ \mu m \ (\text{single wire}) \\ \sigma_{pt}/p_t \sim 0.5 \ \% \ @ \ 1 \ GeV \end{split}$$

$$\begin{split} &\text{Electromagnetic CsI(Tl) Calorimeter} \\ &\sigma_E/E \leq 2.5\% \quad \text{@ 1 GeV (barrel)} \\ &\sigma_E/E \leq 5\% \quad \text{@ 1 GeV (end caps)} \\ &\sigma_{xy} \sim (6 \text{ mm})/E^{1/2} \text{ @ 1 GeV} \end{split}$$

RPC Muon Detector $\Delta\Omega/4\pi$ =93%

BESIII physics programme

Light hadron physics

- Meson and baryon spectroscopy
- Multiquark states
- Threshold effects
- Glueballs and hybrids
- two-photon physics
- Form factors

QCD and T

- Precision R measurement
- t decay

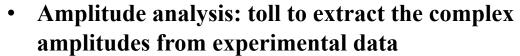
Charmonium physics

- Precision spectroscopy
- Transitions and decays

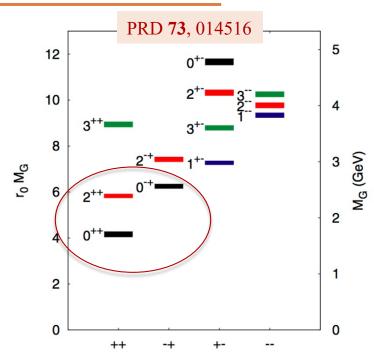
XYZ meson physics

- Y(4260), Y(4360) properties
- $Z_c(3900)^+, ...$

Charm physics


- Semi-leptonic form factors
- Decay constants f_D and f_{Ds}
- CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
- $D^0-\overline{D}^0$ mixing, CPV
- Strong phases

Precision mass measurements


- T mass
- D, D* mass

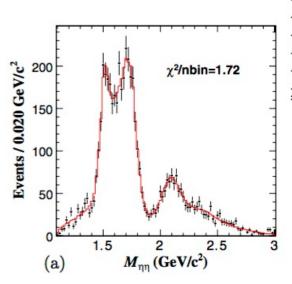
Amplitude Analyses in BESIII

- J/ ψ radiative decays are ideal for searching glueballs
 - $J/\psi \rightarrow \gamma PP: 0^{++}, 2^{++}, ...$
 - $J/\psi \rightarrow \gamma PPP, \gamma VV: 0^{-+}$
- Neutral channel is much cleaner than the charged ones
- Very complicated mass spectrum in the low mass region: many broad, overlapping states complicate the study of the spectra

- Models with free parameters
- Consider the kinematic of final states particles
- Vary the parameters to maximize the likelihood
- Mass Dependent (MD) PWA: model the dynamics of particle interactions as coherent sum of resonances
- Mass Independent (MI) PWA: make minimal model assumptions and measure the dynamical amplitudes independently in small regions of two-meson invariant mass (PRD92, 052003 (2015))

PWA of $J/\psi \rightarrow \gamma \eta \eta$

- J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

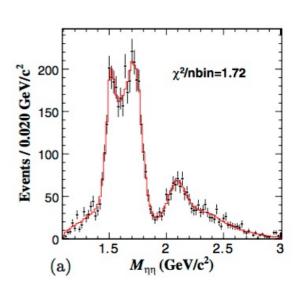

 $f_0(1710)$ $f_0(1500)$ $f_0(2100)$ 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 (b) $M_{\eta\eta}(\text{GeV/c}^2)$ (a) $M_{\eta\eta}(\text{GeV/c}^2)$ (c) $M_{\eta\eta}(\text{GeV/c}^2)$ 200 Events / 0.020 GeV/c² χ²/nbin=1.72 f₂'(1525) f₂(1810) f₂(2340) Events / 20 MeV/c² 50 (d) $M_{nn}(\text{GeV/c}^2)$ $M_{\eta\eta}(\text{GeV/c}^2)$ $M_{nn}(\text{GeV/c}^2)$ 1.5 0++ PS Total 0++ Total 2++ $M_{\rm nn} \, (\text{GeV/c}^2)$ 20 MeV/c² Events / 20 MeV/c² (a) component component 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 M_{nn}(GeV/c²) (h) $M_{nn}(\text{GeV/c}^2)$ $M_{\rm nn}(\text{GeV/c}^2)$

PRD **87**, 092009 (2013)

PWA of $J/\psi \rightarrow \gamma \eta \eta$

PRD **87**, 092009 (2013)

- J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on 2.25×10^8 J/ ψ events

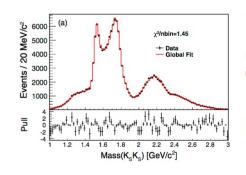

Resonance	Mass (MeV/ c^2)	Width (MeV/c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468+14+23	136+41+28	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9σ
$f_2'(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
$f_2(1810)$	$1822^{+29}_{-24}{}^{+66}_{-57}$	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31}_{-30}{}^{+140}_{-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62}_{-0.65}^{+2.37}) \times 10^{-5}$	7.6σ

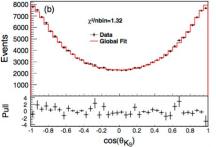
- $f_0(1500)$ dominant decays are 4π and $\pi\pi$
- The production rate of $f_0(1710)$ is compatible with LQCD (PRL110,021601) prediction for a pure scalar glueball
 - Suggest a large overlap with 0++ gluball
- PWA requires a strong contribution from $f_2(2340)$ with fairly large production rate \Rightarrow it could be a good candidate for the lowest lying tensor glueball

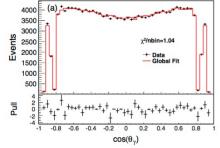
PWA of $J/\psi \rightarrow \gamma \eta \eta$

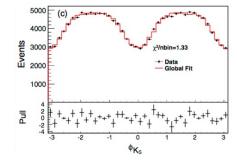
PRD **87**, 092009 (2013)

- J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on 2.25×10^8 J/ ψ events

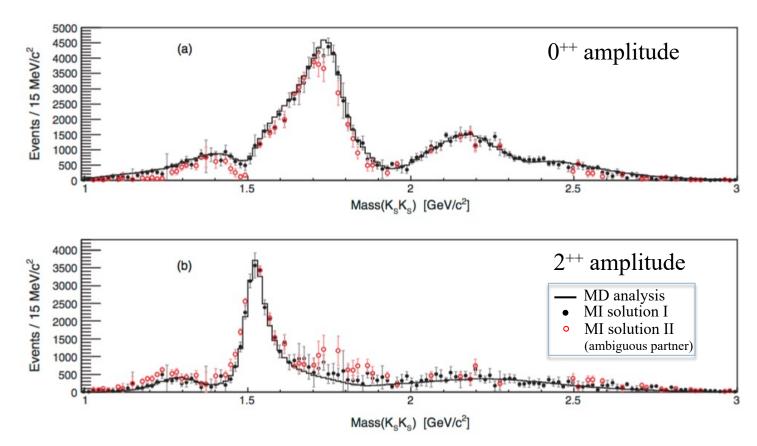

	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	
$f_0(1500)$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$(1.13^{+0.09}_{-0.10}{}^{+0.64}_{-0.28}) \times 10^{-4}$	13.9σ
f ₂ '(1525)	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	6.4σ
$f_2(1810)$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	7.6σ
$f_2(2340)$	$(5.60^{+0.62}_{-0.65}^{+0.62}_{-2.07}) \times 10^{-5}$	


- $f_0(1500)$ dominant decays are 4π and $\pi\pi$
- The production rate of $f_0(1710)$ is compatible with LQCD (PRL110,021601) prediction for a pure scalar glueball
 - Suggest a large overlap with 0++ glueball
- PWA requires a strong contribution from $f_2(2340)$ with fairly large production rate \Rightarrow it could be a good candidate for the lowest lying tensor glueball


PWA of $J/\psi \rightarrow \gamma K^{0}_{S}K^{0}_{S}$


PRD 98, 072003 (2018)

- $J/\psi \rightarrow \gamma K_S K_S$: clean laboratory to search for even++ states
- PWA based on 1311M of J/ψ events

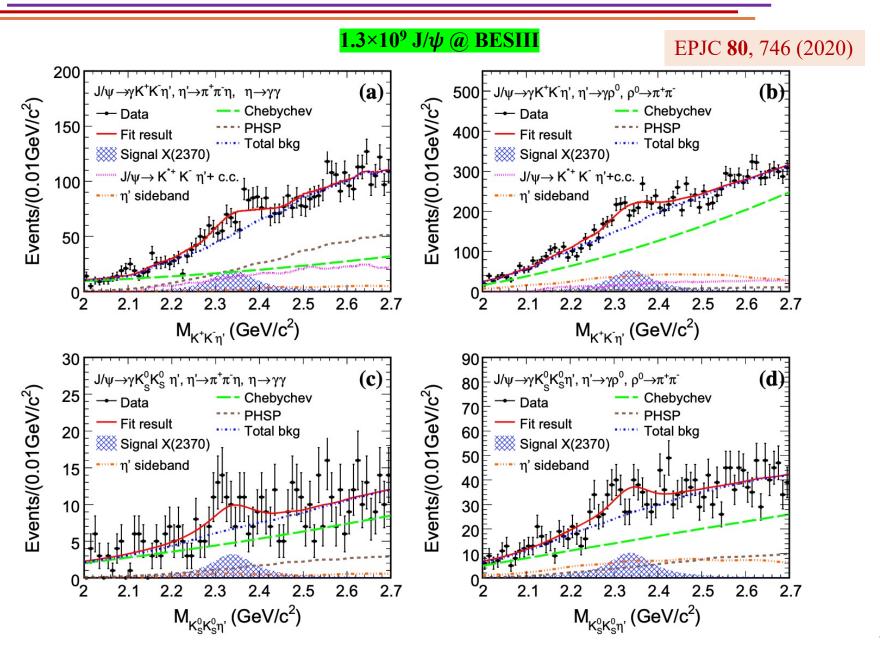

Resonance	$M (\text{MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma ({ m MeV}/c^2)$	$\Gamma_{\rm PDG}~({ m MeV}/c^2)$	Branching fraction	Significance
K*(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ
$f_0(1370)$	$1350 \pm 9^{+12}_{-2}$	1200 to 1500	$231 \pm 21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765 \pm 2^{+1}_{-1}$	1723^{+6}_{-5}	$146 \pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870 \pm 7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364 \pm 9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$	≫ 35 <i>σ</i>
$f_0(2330)$	$2411\pm10\pm7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$	33σ
$f_2'(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345^{+50}_{-40}	$507 \pm 37^{+18}_{-21}$	322^{+70}_{-60}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$	26σ
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP					$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$	13σ

- $f_0(1710)$ and $f_0(2200)$ dominate the scalar spectrum, but we need also to include $f_0(2330)$
- BR of $f_0(1710)$ is one order of magnitude larger than BR of $f_0(1500)$: $f_0(1710)$ overlap with glueball state
- Structure near 1.5 GeV dominated by tensor contribution f_2 '(1525), while above 2 GeV is dominantly f_2 (2340)

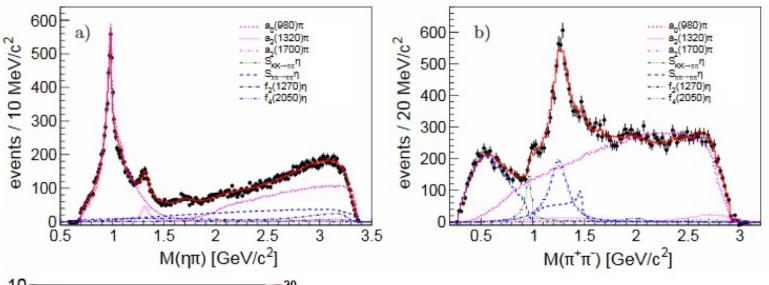
PWA of $J/\psi \rightarrow \gamma K^{0}_{S}K^{0}_{S}$

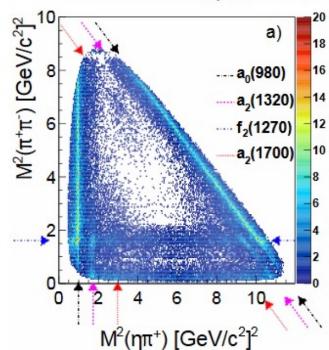
PRD 98, 072003 (2018)

- Mass independent PWA results
 - Amplitudes extracted independently in bins of K_SK_S invariant mass

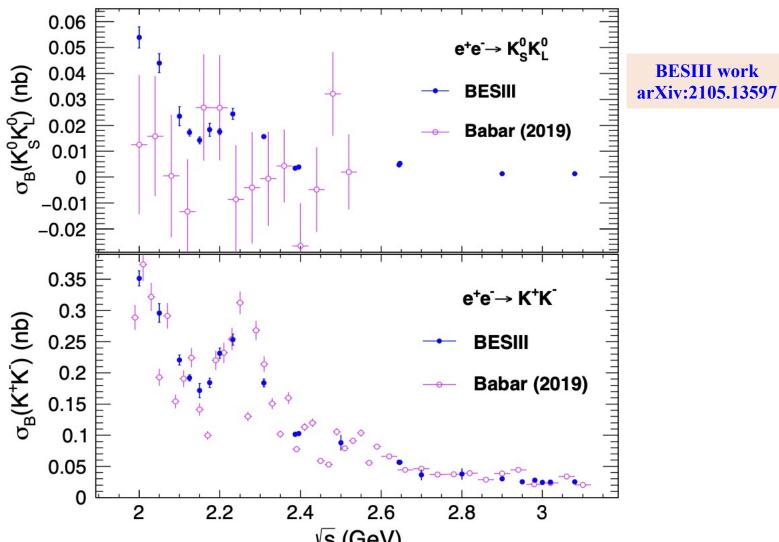

- Agreement with results from MD PWA (no acceptance correction included)
- MI results useful for a systematic study of hadronic interaction

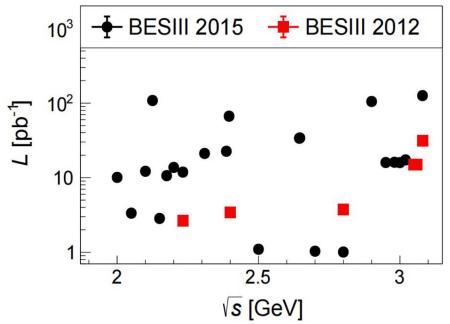
PWA status and plans in a nutshell


	0+	2+	0-	
$J/\psi{ ightarrow}\gamma PP$	$J/\psi ightarrow \gamma\eta\eta$ (PRI $J/\psi ightarrow \gamma\pi^0\pi^0$ (PR $J/\psi ightarrow \gamma K_S K_S$ (PI $J/\psi ightarrow \gamma\eta$ $J/\psi ightarrow \gamma\eta$	D92,052003) RD98,072003) ηη'		PWA Published Ongoing Published, no PWA PRD 93, 112011 (2016) O'model independent
$J/\psi{ ightarrow}\gamma VV$			$ \phi \rightarrow \gamma \omega \phi$ (PRD87,032008) $ \phi \rightarrow \gamma \phi \phi$ (PRD93,112011) $ J/\psi \rightarrow \gamma \omega \omega$	2000 0 0 model dependent 0 model independent 2 model independent 2 model independent 2 model independent 2 model dependent
$J/\psi \rightarrow \gamma PPP$			J/ψ \rightarrow γη' $\pi\pi$ (PRL106,072002) J/ψ \rightarrow γ K K η' J/ψ \rightarrow γ η π^0 π^0	500 2 2.2 2.4 2.6 M(\$\phi\$) (GeV/c^2)


- 0++: the production rate $f_0(1710)$ is compatible with LQCD prediction for a pure gauge scalar glueball
- 2++: $f_0(2340)$ seems to be a good candidate for tensor gluball [PRL111,091601] (large production rate)
- 0—+: $\eta(2225)$ is confirmed and two additional pseudoscalar states, $\eta(2100)$ and X(2500), are observed

First Observation of X(2370) in $J/\psi \rightarrow \gamma K \overline{K} \eta$


Search exotics in $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$


Isabella Garzía - University of Ferrara and INFN

- Clear evidence for $a_2(1700)$ in χ_{c1} decays
- Upper limits for $\pi_1(1^{-+})$ in 1.4 2.0 GeV/c²
- More works in progress in J/ψ and χ_{c1} decays

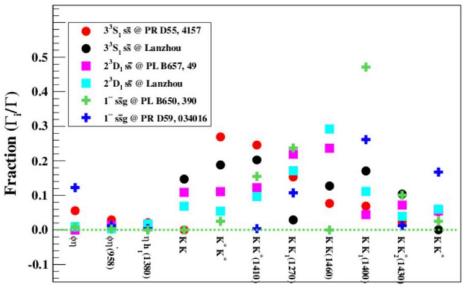

BESIII work

FIG. 5: Comparison of cross-section measurements of the processes $e^+e^- \to K_S^0 K_L^0$ (top panel) and $e^+e^- \to K^+ K^-$ (bottom panel) by BESIII (filled dots) [13] and BaBar (open circles) [35].

dataset

theoretical prediction

PWA of $\psi(3686) \rightarrow KK\eta$

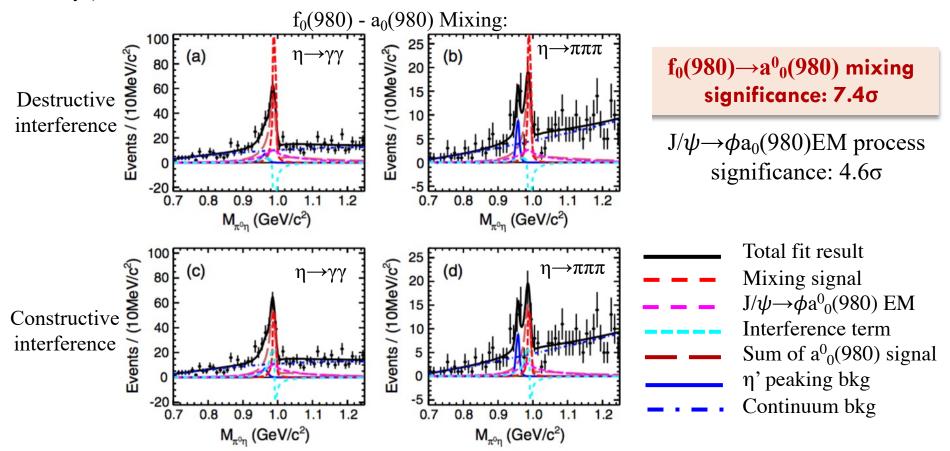
PRD **101**,032008(2020)

TABLE I. Mass, width and significance of each component in the baseline solution. The first uncertainties are statistical and the second are systematic.

Resonance	M (MeV/ c^2)	Γ (MeV)	Significance
$\phi(1680)$	1680^{+12+21}_{-13-21}	185^{+30+25}_{-26-47}	14.3σ
X(1750)	1784^{+12+0}_{-12-27}	106^{+22+8}_{-19-36}	10.0σ
$\rho(2150)$	2255_{-18-41}^{+17+50}	$460^{+54+160}_{-48-90}$	23.5σ
$\rho_3(2250)$	2248^{+17+59}_{-17-5}	$185^{+31+17}_{-26-103}$	8.5σ
$K_2^*(1980)$	2046^{+17+67}_{-16-15}	408^{+38+72}_{-34-44}	19.9σ
$K_3^*(1780)$	1813^{+15+65}_{-15-16}	191^{+43+3}_{-37-81}	11.2σ

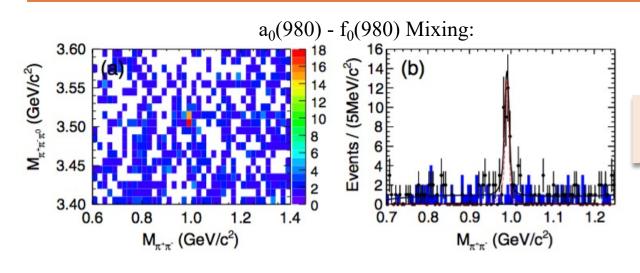
PWA of $\psi(3686) \rightarrow KK\eta$

PRD **101**,032008(2020)


This work			PDG	PDG [23]		
Resonance	$M \text{ (MeV}/c^2)$	Γ (MeV)	$M \text{ (MeV}/c^2)$	Γ (MeV)		
$\phi(1680)$	1680 ⁺¹²⁺²¹ ₋₁₃₋₂₁	185 ⁺³⁰⁺²⁵ ₋₂₆₋₄₇	1680 ± 20	150 ± 50		
<i>X</i> (1750)	1784^{+12+0}_{-12-27}	106^{+22+8}_{-19-36}	$(1720 \pm 20)_{ ho(1700)} \ (1753.5 \pm 1.5 \pm 2.3)_{X(1750)} \ [15]$	$(250 \pm 100)_{ ho(1700)} \ (122.2 \pm 6.2 \pm 8.0)_{X(1750)} \ [15]$		
$\rho(2150)$	2255^{+17+50}_{-18-41}	$460^{+54+160}_{-48-90}$	$(2153 \pm 27)_{ ho(2150)} \ [31] \ (2175 \pm 15)_{\phi(2170)}$	$(389 \pm 79)_{ ho(2150)}$ [31] $(61 \pm 18)_{\phi(2170)}$		
$\rho_3(2250)$	2248^{+17+59}_{-17-5}	$185^{+31+17}_{-26-103}$	2232 [32]	220 [32]		
$K_2^*(1980)$	2046^{+17+67}_{-16-15}	408^{+38+72}_{-34-44}	$1973 \pm 8 \pm 25$	$373 \pm 33 \pm 60$		
$K_3^*(1780)$	1813^{+15+65}_{-15-16}	191^{+43+3}_{-37-81}	1776 ± 6	159 ± 21		

$a_0(980)-f_0(980)$ mixing

PRL **121**, 022001(2018)


 $1^{-}(0^{++})$ $0^{+}(0^{++})$

- $a_0(980)$ $f_0(980)$ still controversial explanation about their nature
- Direct measure of the $f_0(980)$ $a_0(980)$ mixing in the process proposed in 1979 [PLB88,367] $J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a^0_0(980) \rightarrow \phi \eta \pi^0$ and $\chi_{c1} \rightarrow \pi^0 a^0_0(980) \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$ (isospin violating decays)

Isabella Garzía - University of Ferrara and INFN

$a_0(980)-f_0(980)$ mixing

PRL **121**, 022001(2018)

 $a_0(980) \rightarrow f^0_0(980)$ mixing significance: 5.5 σ

f₀(980) signal significant narrower than PDG

Mixing intensities:

$$\xi_{fa} = \frac{\mathcal{B}[J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0]}{\mathcal{B}[J/\psi \to \phi f_0(980) \to \phi \pi \pi]},$$

$$\xi_{af} = \frac{\mathcal{B}[\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-]}{\mathcal{B}[\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 \pi^0 \eta]}.$$

Channel	Solution I	Solution II	$a_0^0(980) \to f_0(980)$
\mathcal{B} (mixing) (10 ⁻⁶)	$3.18 \pm 0.51 \pm 0.38 \pm 0.28$	$1.31 \pm 0.41 \pm 0.39 \pm 0.43$	$0.35 \pm 0.06 \pm 0.03 \pm 0.06$
\mathcal{B} (EM) (10 ⁻⁶)	$3.25 \pm 1.08 \pm 1.08 \pm 1.12$	$2.62 \pm 1.02 \pm 1.13 \pm 0.48$	
\mathcal{B} (total) (10 ⁻⁶)	$4.93 \pm 1.01 \pm 0.96 \pm 1.09$	$4.37 \pm 0.97 \pm 0.94 \pm 0.06$	• • •
ξ (%)	$0.99 \pm 0.16 \pm 0.30 \pm 0.09$	$0.41 \pm 0.13 \pm 0.17 \pm 0.13$	$0.40 \pm 0.07 \pm 0.14 \pm 0.07$