

XVth INTERNATIONAL CONFERENCE ON **HEAVY QUARKS AND LEPTONS**

HQL2021

Searching For Lepton Flavor Violating Interactions At Future Electron-positron Colliders

arXiv:2107.00545

Presented by: Seddigheh Tizchang

In Collaboration with: S. M. Etesami, R. Jafari M. Mohammadi Najafabadi

School of Particles and Accelerators, IPM

*seddigheh.tizchang@cern.ch 16 Sep 2021

MOTIVATION

Lepton Flavor is an exact symmetry, as soon as neutrino are massless

- Neutrino oscillations have been observed → Neutrinos are massive.
- This leads to LFV.

But ...
$$\mathrm{BR}(\mu \to e \gamma) \sim \left(\frac{\delta m_\nu^2}{m_W^2}\right)^2 < 10^{-54}$$

An increase of several orders of magnitude is predicted in some SM extensions.

Any detection of LFV signal Clear evidence for BSM

Experimental search for LFV

Phys. Rev. D 104 (2021) 032013

arXiv:2105.12491v1

	Observed (expected) upper limit on $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]				
Final state, polarization assumption	er	μτ			
ℓτhad Run 1 + Run 2, unpolarized τ	8.1 (8.1)	9.5 (6.1)			
ℓτhat Run 2, left-handed τ	8.2 (8.6)	9.5 (6.7)			
ℓ r _{bad} Run 2, right-handed r	7.8 (7.6)	10 (5.8)			
ℓτ _ℓ · Run 2, unpolarized τ	7.0 (8.9)	7.2 (10)			
ℓτ _L Run 2, left-handed τ	5.9 (7.5)	5.7 (8.5)			
$\ell \tau_{\ell'}$ Run 2, right-handed τ	8.4(11)	9.2 (13)			
Combined & Run 1 + Run 2, unpolarized	τ 5.0 (6.0)	6.5 (5.3)			
Combined & Run 2, left-handed r	4.5 (5.7)	5.6 (5.3)			
Combined \$\epsilon T\$ Run 2, right-handed \$\tau\$	5.4 (6.2)	7.7 (5.3)			

Figure taken from Bernstein & Cooper [arXiv:1307.5787]

ArXiv:1808.10567

$$\mathcal{B}(\tau^- \to e^- e^+ e^-) \le 2.9 \times 10^{-8} \text{ (BaBar)}$$

 $\mathcal{B}(\tau^- \to e^- e^+ e^-) \le 2.7 \times 10^{-8} \text{ (Belle)}$

≥ 160 CMS	Category A2
140 CMS	Data
120	Signal (B(τ → 3μ) = 10 ⁻⁷) =
100 Livents	Background-only fit
80 1	المرين برايا
60 1	
40	1 1 1 1
20	4
0 1.7	1.8 1.9 2
	m(3µ) [GeV]

JHEP 01 (2021) 163

Experiment	Observed (Expected) upper limit on B($ au o 3\mu$) (x 10 8 at 90% C.L.)			
Belle	2.1 (-)			
BaBar	3.3 (4.0)			
LHCb (Run I data)	4.6 (5.0)			
ATLAS (Run I data)	38 (39) Eur. Phys. J. C 76 (2016) 232			
CMS	8.0(6.9)			

FCC-ee collider

Future Circular Collider (FCC)

Plans for 80-100 km tunnel under Geneva Lake and Alps

- FCC-ee is designed to provide e+e- collisions in the beam energy range of 45 to 185 GeV.
- Instantaneous luminosity expected at FCC-ee, in a configuration with four interaction points operating simultaneously, as a function of the center-of-mass energy.

C.M. Energy (GeV)	365	240	162.5	157.5
$IL ab^{-1}$	1.5	5	5	5

Future lepton colliders are expected to provide a new place in flavor physics.

THEORETICAL FRAMEWORK

Historic example: 4-fermion vertex (dim-6), Weak Interactions

$$\Lambda = M_W \xrightarrow{\frac{g^2}{8} \frac{1}{g^2 - M_W^2}} \frac{q^2 << M_W^2}{\sqrt{2}} \times \frac{g^2}{8} \frac{1}{M_W^2} = \frac{G_F}{\sqrt{2}}$$

$$\mathcal{L}_{ ext{eff}} \supset \sum_{lpha,eta} \sum_{ij} rac{c_{lphaeta}^{ij}}{\Lambda^2} \, \mathcal{O}_{lphaeta}^{ij} \, ,$$

$$\mathcal{O}_{RL}^{S,ij} = (\overline{\ell}_{jL}\ell_{iR})(\overline{\ell}_{jL}\ell_{jR}), \qquad \mathcal{O}_{LR}^{S,ij} = (\overline{\ell}_{iR}\ell_{jL})(\overline{\ell}_{jR}\ell_{jL}),
\mathcal{O}_{RR}^{V,ij} = (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR})(\overline{\ell}_{jR}\gamma_{\mu}\ell_{jR}), \qquad \mathcal{O}_{LL}^{V,ij} = (\overline{\ell}_{iL}\gamma^{\mu}\ell_{jL})(\overline{\ell}_{V,jL}\gamma_{\mu}\ell_{jL}),
\mathcal{O}_{LR}^{V,ij} = (\overline{\ell}_{iL}\gamma^{\mu}\ell_{jL}), (\overline{\ell}_{jR}\gamma_{\mu}\ell_{jR}), \qquad \mathcal{O}_{RL}^{V,ij} = (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR})(\overline{\ell}_{iL}\gamma_{\mu}\ell_{iL}),
\mathcal{O}_{LR}^{V,ij} = (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jL})(\overline{\ell}_{iL}\gamma_{\mu}\ell_{iL}),
\mathcal{O}_{RL}^{V,ij} = (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR})(\overline{\ell}_{iL}\gamma_{\mu}\ell_{iL}),
\mathcal{O}_{RL}^{V,ij} = (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR})(\overline{\ell}_{iL}\gamma_{\mu}\ell_{jL}),
\mathcal{O}_{RL}^{V,ij} = (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR})(\overline{\ell}_{iL}\gamma_{\mu}\ell_{jL}),
\mathcal{O}_{RL}^{V,ij} = (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR})(\overline{\ell}_{iR}\gamma_{\mu}\ell_{jR}),
\mathcal{O}_{RL}^{V,ij} = (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR}),
\mathcal{O}_{RL}^{V,ij} = (\overline{\ell}_{iR}\gamma_{\mu}\ell_{jR}),
\mathcal$$

- lacktriangle Λ : the energy scale of new physics
- Constraints on LFVs between e and τ , and μ and τ are much looser \Rightarrow eee τ couplings

THEORETICAL FRAMEWORK

• The theoretical cross section of $e^-e^+ o e^\pm au^\mp$:

$$\sigma\left(s\right) \;\; = \;\; \frac{s}{96\pi\Lambda^4} \Big\{ (|c_{LR}^S|^2 + |c_{RL}^S|^2) + 16(|c_{LL}^V|^2 + |c_{RR}^V|^2 + |c_{LR}^V|^2 + |c_{RL}^V|^2) \Big\}$$

[arXiv: 0611222]

$$\sigma(e^-e^+ \to e\tau) \propto s$$

 Vector type operators are larger than the scalar type ones by a factor of 16.

DATA SIMULATION

Background processes:

- Six different signal samples Six operators
- Tau-lepton hadronic decay.
- Wilson coefficients $c_{i,j}$ =0.1, with i, j = L,R, and Λ = 1 TeV.

(I)
$$e^-e^+ \to e^{\pm} \tau^{\mp} \nu \bar{\nu}$$
,

(II)
$$e^-e^+ \to \tau^+\tau^-$$
,

(III)
$$e^-e^+ \to \ell^{\pm}\ell^{\mp}\ell^{\prime\pm}\ell^{\prime\mp} (\ell, \ell' = e, \mu, \tau),$$

(IV)
$$e^-e^+ \to \ell^{\pm}\ell^{\mp}jj \ (\ell = e, \mu, \tau),$$

(V)
$$e^-e^+ \to \ell^{\pm}\nu jj(\ell=e,\mu,\tau),$$

(VI)
$$e^-e^+ \rightarrow jj$$
.

ANALYSIS STRATEGY

Event selection:

- Exactly 1 tau-tagged jet (Hadronic decay)
- Exactly 1 electron (positron)
- Opposite sign leptons

- $P_T > 20$ GeV for tau
- $P_T > 10$ GeV for electron (positron)
- $|\eta| \le 2.5$ for all objects
- $\Delta R > 0.5$ GeV for all objects
- RelIso < 0.15; The ratio of the sum of P_T of charged particle tracks inside a cone of size 0.5 around the electron track to P_T of the electron.

ANALYSIS STRATEGY

■ To enhance the sensitivity, we apply additional cuts on (for \sqrt{s} =240 GeV):

EFFICIENCY

/a _ 157 5 CaV	Sig	nal	SM Backgrounds					
$\sqrt{s} = 157.5 \text{ GeV}$	$c_{LR}^{V} = 0.1$	$c_{LR}^{S} = 0.1$	$e\tau \nu \bar{\nu}$	$ auar{ au}$	eee'e'	$\ell\ell jj$	$\ell \nu j j$	
(I): Pre-selection cuts	0.1746	0.1698	0.099	0.045	4.9×10^{-3}	1.4×10^{-3}	3.3×10^{-4}	
(II): $M_{e\tau} > 65 \text{ GeV}$	0.1741	0.1697	0.038	0.019	2.2×10^{-3}	1.8×10^{-4}	7.5×10^{-5}	
(III): $E_e > 78.6 \text{ GeV}$	0.0984	0.0831	2.8×10^{-8}	1.5×10^{-7}	6.02×10^{-6}	1.7×10^{-7}	0.0	
C 160 F C V	Signal		SM Backgrounds					
$\sqrt{s} = 162.5 \text{ GeV}$	$c_{LR}^{V} = 0.1$	$c_{LR}^{S} = 0.1$	$e \tau \nu \bar{\nu}$	$ auar{ au}$	eee'e'	$\ell \overline{\ell} j j$	$\ell \nu j j$	
(I): Pre-selection cuts	0.1727	0.1711	0.106	0.048	4.9×10^{-3}	1.6×10^{-3}	4.5×10^{-4}	
(II): $M_{e\tau} > 65 \text{ GeV}$	0.1727	0.1710	0.041	0.025	2.4×10^{-3}	2.1×10^{-4}	1.0×10^{-4}	
(III): $E_e > 81 \text{ GeV}$	0.1122	0.0949	6×10^{-8}	2.0×10^{-7}	3.61×10^{-6}	2.1×10^{-7}	0.0	
$\sqrt{s} = 240 \text{ GeV}$	Signal		SM Backgrounds					
$\sqrt{s} = 240 \text{ GeV}$	$c_{LR}^{V} = 0.1$	$c_{LR}^{S} = 0.1$	$e \tau \nu \bar{\nu}$	$ auar{ au}$	lll'l'	$\ell\ell jj$	$\ell \nu j j$	
I): Pre-selection cuts	0.2156	0.2137	0.131	0.037	8.8×10^{-3}	6.2×10^{-3}	4.9×10^{-4}	
1). Fre-selection cuts	0.2100	0.2101	8	0.007	0.0 \ 10	0.2 \ 10	1.0 / 10	
(II): $M_{e\tau} > 100 \text{ GeV}$	0.2150	0.2134	0.084	0.017	1.6×10^{-3}	2.4×10^{-4}	2.0×10^{-4}	
	\$140 PER		20763757				THE RESERVE THE PARTY OF THE PA	
(II): $M_{e\tau} > 100 \text{ GeV}$ (III): $E_e > 119.7 \text{ GeV}$	0.2150 0.1072	0.2134	0.084	$0.017 \\ 1.5 \times 10^{-7}$	1.6×10^{-3}	2.4×10^{-4}	2.0×10^{-4}	
(II): $M_{e\tau} > 100 \text{ GeV}$	0.2150 0.1072 Sig	0.2134 0.0989	0.084	$0.017 \\ 1.5 \times 10^{-7}$	$1.6 \times 10^{-3} \\ 1.2 \times 10^{-5}$	2.4×10^{-4}	2.0×10^{-4}	
(II): $M_{e\tau} > 100 \text{ GeV}$ (III): $E_e > 119.7 \text{ GeV}$	0.2150 0.1072	0.2134 0.0989	0.084 2.1×10^{-8}	0.017 1.5×10^{-7} SM F	1.6×10^{-3} 1.2×10^{-5} Backgrounds	2.4×10^{-4} 2.4×10^{-7}	2.0×10^{-4} 0.0	
(II): $M_{e\tau} > 100 \text{ GeV}$ (II): $E_e > 119.7 \text{ GeV}$ $\sqrt{s} = 365 \text{ GeV}$	$\begin{bmatrix} 0.2150 \\ 0.1072 \end{bmatrix}$ Sig $c_{LR}^{V} = 0.1$	0.2134 0.0989 nal $c_{LR}^{S} = 0.1$	0.084 2.1×10^{-8} $e\tau\nu\bar{\nu}$	0.017 1.5×10^{-7} SM F $\tau \bar{\tau}$	1.6×10^{-3} 1.2×10^{-5} Backgrounds $\ell\ell\ell'\ell'$	2.4×10^{-4} 2.4×10^{-7} $\ell \ell j j$	2.0×10^{-4} 0.0 $\ell \nu jj$	

RESULTS & DISCUSSION

- In order to achieve better sensitivity, the results from four energy benchmarks are combined.
- **Comparison to the Belle-II experiment with 50** ab^{-1} data

[arXiv:1803.10475]

Comparison to a study at TeV with beam polarization:

$\sqrt{s}~({\rm GeV})$, ${\cal L}~({\rm ab}^{-1})$	$\frac{e_{LL}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{c_{RR}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{e_{RL}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{e_{LR}^{V}}{\Lambda^{2}}[\times 10^{-9}](\text{ GeV}^{-2})$	$\frac{e_{RL}^S}{\Lambda^2} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{e_{LR}^{S}}{\Lambda^{2}}[\times 10^{-9}](\text{ GeV}^{-2})$
157.5 , 5	5.82	5.46	5.74	5.36	21.18	22.61
162.5, 5	5.71	5.36	5.62	5.29	21.42	23.12
240,5	3.69	3.50	3.73	3.53	14.81	14.74
365, 1.5	3.93	3.94	3.92	3.93	15.80	15.80
Combination	1.32	1.25	1.32	1.25	5.1	5.3
Belle II	1.06	1.06	1.55	1.55	4.29	4.29
$\sqrt{s} = 1$ TeV, pol. beam	4.3	1.1	1.6	1.8	13	5.9

RESULTS & DISCUSSION

- In order to achieve better sensitivity, the results from four energy benchmarks are combined.
- Comparison to the Belle-II experiment with $50 ab^{-1}$ data

[arXiv:1803.10475]

Comparison to a study at TeV with beam polarization:

$\sqrt{s}~({\rm GeV})$, ${\cal L}~({\rm ab}^{-1})$	$\frac{e_{LL}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{c_{RR}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{e_{RL}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{e_{LR}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{e_{RL}^S}{\Lambda^2} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{e_{LR}^{S}}{\Lambda^{2}}[\times 10^{-9}](\text{ GeV}^{-2})$
157.5 , 5	5.82	5.46	5.74	5.36	21.18	22.61
162.5, 5	5.71	5.36	5.62	5.29	21.42	23.12
240,5	3.69	3.50	3.73	3.53	14.81	14.74
365 , 1.5	3.93	3.94	3.92	3.93	15.80	15.80
Combination	1.32	1.25	1.32	1.25	5.1	5.3
Belle II	1.06	1.06	1.55	1.55	4.29	4.29
$\sqrt{s} = 1$ TeV, pol. beam	4.3	1.1	1.6	1.8	13	5.9

RESULTS & DISCUSSION

CONCLUSION

- LFV processes are absent in the SM but appear in some extensions of the SM.
- The sensitivity of the FCC-ee, to the LFV couplings is examined using $e\tau$ production.
- Effective Lagrangian: four Fermi contact interactions with vector and scalar types
- The events are generated using MadGraph5 considering ISR effect and passed through
 PYTHIA8 and Delphes using the ILD detector card.
- The hadronic tau decay channel and the main sources of background are considered.
- Cuts on E_e and $M_{e\tau}$ are applied to suppress the background contributions.
- Limits at 95% CL on the LFV couplings have been obtained for the four center-of-mass energies
 of the FCC-ee. Finally, a statistical combination of results is performed.
- We show that the statistical combination increases the sensitivity to the LFV couplings significantly with respect to the individual energies.

THANKS FOR YOUR ATTENTION!