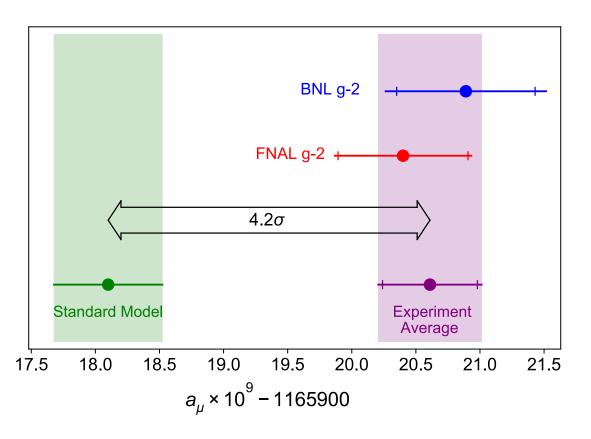

SM Theory of muon g-2

Thomas Teubner



- Introduction
- Overview of a_{μ}^{SM} from the Muon g-2 Theory Initiative
- Data-driven HVP evaluation: basic ingredients, main features & results
- Outlook & conclusions

SM theory vs. Experiment

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm

[Phys. Rev. Lett. 126 (2021) 14, 141801]

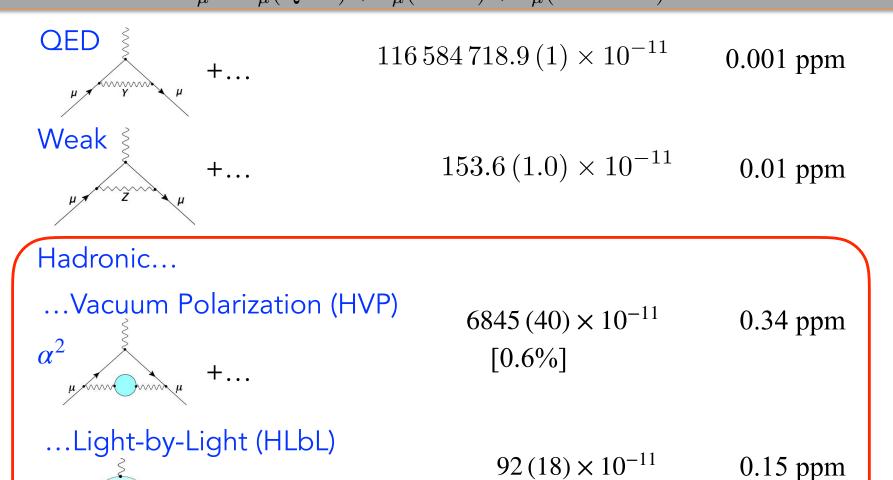
- Unblinding of Run 1 analyses:25 February '21
- FNAL confirms BNL
- Release of result:7 April '21
- PRL already has > 280 cites (mostly from BSM)
- Run 1 is only 6% of total expected statistics

➤ But what about the Standard Model prediction?

Muon g-2 Theory Initiative est. 2017

- ... map out strategies for obtaining the best theoretical predictions for these hadronic corrections in advance of the experimental result."
- White Paper posted 10 June 2020 (132 authors, from 82 institutions, in 21 countries)

"The anomalous magnetic moment of the muon in the Standard Model"


[T. Aoyama et al, arXiv:2006.04822, Phys. Rept. 887 (2020) 1-166]

▶ please follow citation recommendations

Group photo from the Seattle workshop in September 2019

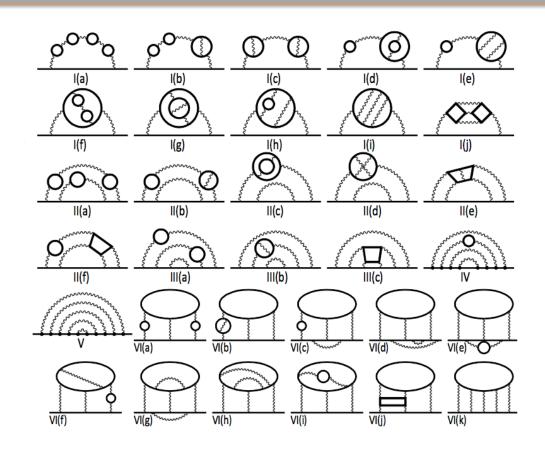
SM WP20 prediction from the TI White Paper (0.37 ppm) $a_{\mu} = a_{\mu}(\text{QED}) + a_{\mu}(\text{Weak}) + a_{\mu}(\text{Hadronic})$

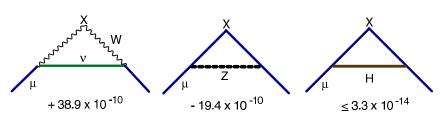
[20%]

 \blacktriangleright Uncertainty dominated by hadronic contributions, now δ HVP > δ HLbL

a_uQED & a_uweak: a triumph for perturbative QFT

QED: Kinoshita et al. + many tests


- g-2 @ 1, 2, 3, 4 & **5 loops**
- Subset of 12672 5-loop diagrams:
- code-generating code, including
- renormalisation
- multi-dim. numerical integrations

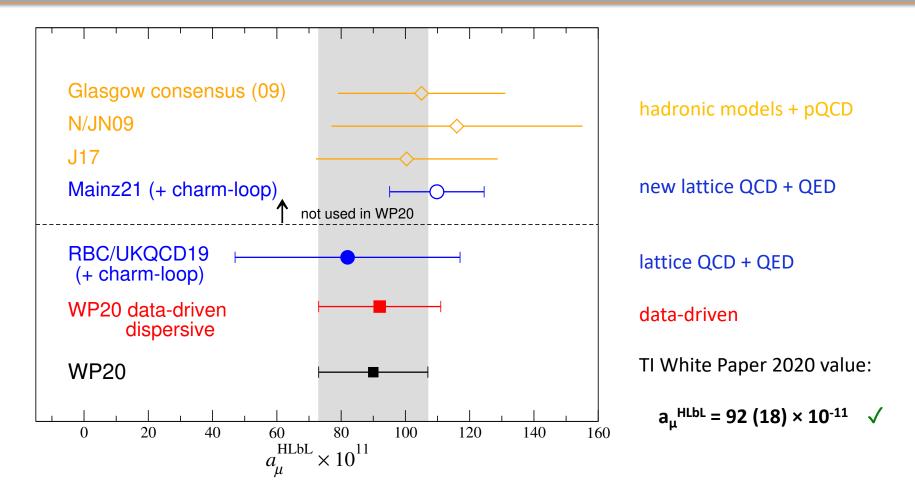

$$a_{\mu}^{QED}$$
 = 116 584 718.9 (1) × 10⁻¹¹ \checkmark

Weak: (several groups agree)

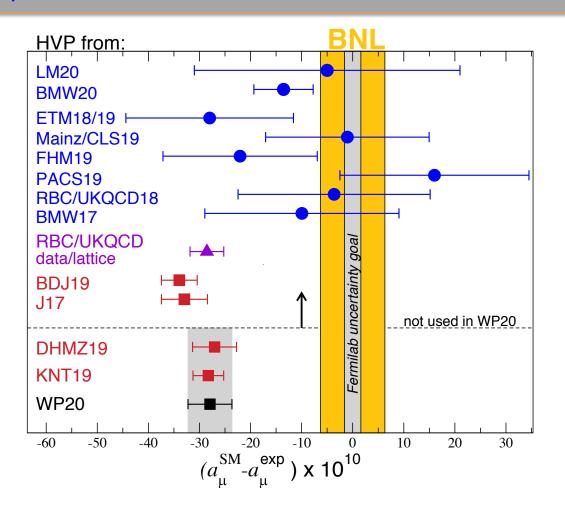
- done to 2-loop order, 1650 diagrams
- the first full 2-loop weak calculation

$$a_{\mu}^{\text{weak}} = 153.6 (1.0) \times 10^{-11} \checkmark$$

SM weak 1-loop diagrams


a, hadronic: non-perturbative, the limiting factor of the SM prediction

- Q: What's in the hadronic (Vacuum Polarisation & Light-by-Light scattering) blobs?
 - A: Anything `hadronic' the virtual photons couple to, i.e. quarks with gluons & photons
 - But: low q² photons dominate loop integral(s)


 cannot calculate blobs with perturbation theory
- Two very different strategies:
 - 1. use wealth of hadronic data_{l_i} 'data-driven dispersive methods':
 - data combination from many experiments, radiative corrections required
 - 2. simulate the strong interaction (+photons) w. discretised Euclidean space-time, 'lattice QCD':
 - finite size, finite lattice spacing, artifacts from lattice actions, QCD + QED needed
 - numerical Monte Carlo methods require large computer resources

au HLbL: WP Status/Summary of Hadronic Light-by-Light contributions

- data-driven dispersive & lattice results have confirmed the earlier model-based predictions
- uncertainty much better under control and at 0.15ppm already sub-leading compared to HVP
- lattice predictions now competitive, good prospects for combination and error reduction to ≤ 10%

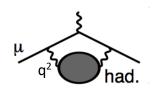
au HVP: WP20 Status/Summary of Hadronic VP contributions

Lattice QCD + QED

- impressive progress, but...
- large spread between results
- tensions when looking at `Euclidean time window' comparisons
- large systematic uncertainties
 (e.g. from non-trivial extrapolation to continuum limit, finite size)

Dispersive/lattice hybrid

(`window' method)


For WP20: Dispersive data-driven from **DHMZ** and **KNT**

TI White Paper 2020 value:

$$a_u^{HVP} = 6845 (40) \times 10^{-11}$$

- TI WP20 prediction uses dispersive data-driven evaluations with minimal model dependence
- a_{μ}^{HVP} value and error obtained by merging procedure \implies accounts for tensions in input data and differences in data treatment & combination (going beyond usual χ^2_{min} inflation)

a_u HVP: Basic principles of dispersive method

$$extstyle extstyle ext$$

2 Im
$$\sim$$
 had. $\int \!\! d\Phi \, \left| \sim \right|^2$

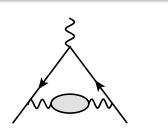
$$a_{\mu}^{\rm had,LO} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\rm th}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\rm had}(s)$$

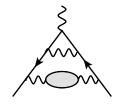
One-loop diagram with hadronic blob = integral over q² of virtual photon, 1 HVP insertion

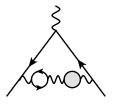
Causality analyticity dispersion integral:

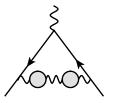
obtain HVP from its imaginary part only

Unitarity → Optical Theorem:


imaginary part (`cut diagram') =


sum over |cut diagram|², i.e.


∝ sum over all total hadronic cross sections

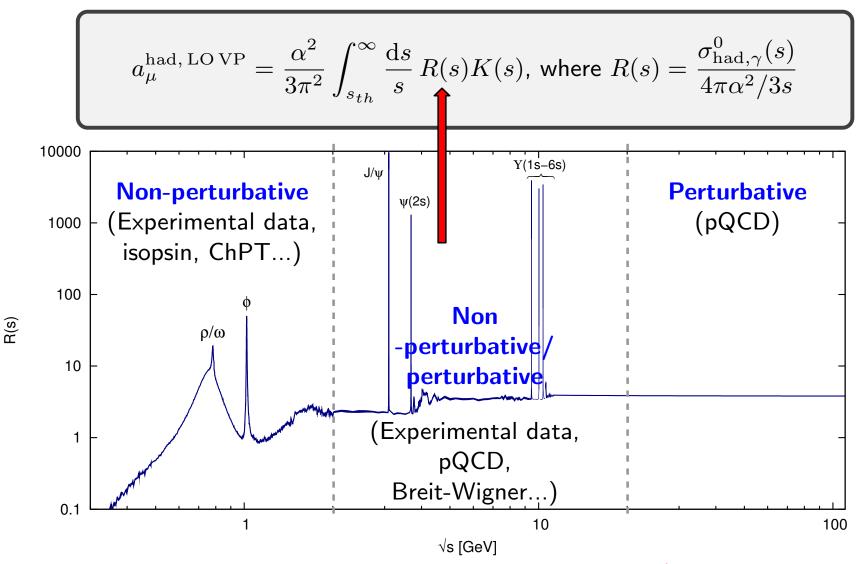

- $\begin{array}{l} \bullet \text{ Weight function } \hat{K}(s)/s = \mathcal{O}(1)/s \\ \Longrightarrow \text{Lower energies more important} \\ \Longrightarrow \pi^+\pi^- \text{ channel: } 73\% \text{ of total } a_\mu^{\mathrm{had,LO}} \\ \end{array}$
- Total hadronic cross section σ_{had} from > 100 data sets for $e^+e^- \rightarrow hadrons$ in > 35 final states
- Uncertainty of a_{μ}^{HVP} prediction from statistical & systematic uncertainties of input data
- Pert. QCD used only at large s, **no modelling** of $\sigma_{had}(s)$ required, direct data integration

a_u HVP: Higher orders & QED power counting; WP20 values in 10⁻¹¹

- All hadronic blobs also contain photons, i.e. real + virtual corrections in $\sigma_{had}(s)$
- LO: 6931(40)
- NLO: -98.3(7)

from three classes of graphs: -207.7(7) + 105.9(4) + 3.4(1) [KNT19]

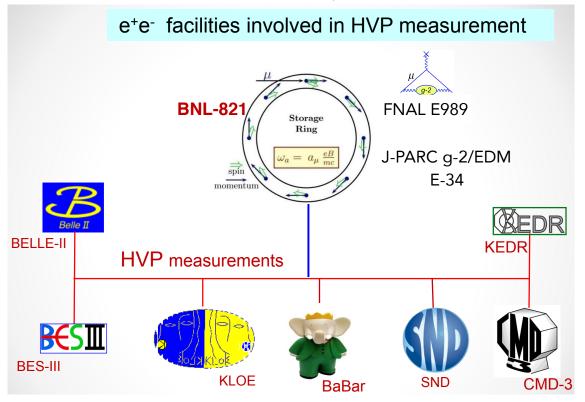
(photonic, extra e-loop, 2 h-loops)


NNLO: 12.4(1) [Kurz et al, PLB 734(2014)144, see also F Jegerlehner]

from five classes of graphs:

$$8.0 - 4.1 + 9.1 - 0.6 + 0.005$$

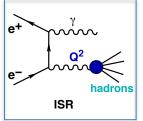
⇒ good convergence, iterations of hadronic blobs very small


HVP disp.: cross section (in terms of R-ratio) input

Must build full hadronic cross section/R-ratio...

a_u HVP: Recent (Ε΄ κρωτίγε erst) al x popult set os HV (Pviding input σ_{had} (s) data

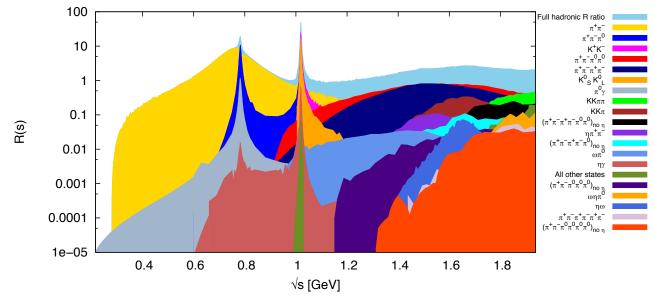
S. Serednyakov (for SND) @ HVP KEK workshop



`Radiative Return' (Initial State Radiation scan at fixed cm energy) 🗸

- ➤ RadioMonteCarLow Working Group report: Eur. Phys. J. C66 (2010) 585-686
- full NLO radiative corrections in ISR MC Phokhara: Campanario et al, PRD 100(2019)7,076004

HVP dispersive: cross section compilation

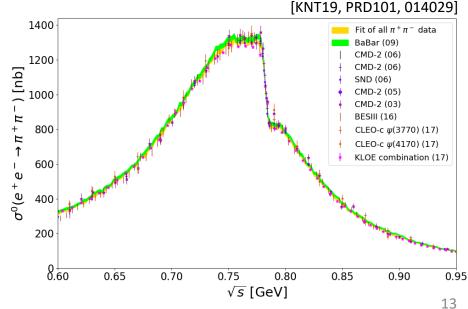

How to get the most precise σ^0_{had} ? Use of $e^+e^- \rightarrow hadrons (+\gamma)$ data:

- Low energies: sum ~35 exclusive channels, 2π, 3π, 4π, 5π, 6π, ΚΚ, ΚΚπ, ΚΚππ, ηπ, ...,
 [now very limited use iso-spin relations for missing channels]
- Above ~1.8 GeV: use of inclusive data or pQCD (away from flavour thresholds), supplemented by narrow resonances (J/Ψ, Y)
- Challenge of data combination (locally in vs, with error inflation if tensions):
 - many experiments, different energy ranges and bins,
 - statistical + systematic errors from many different sources,
 - use of correlations; must avoid inconsistencies, bias

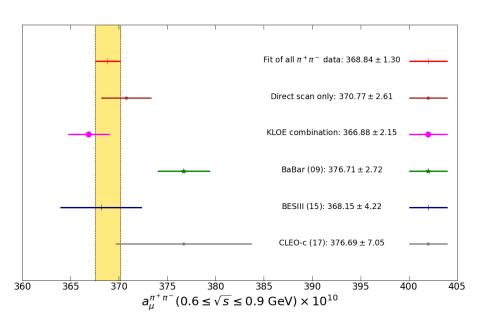
[Significant differences between DHMZ and KNT in use of correlated errors:

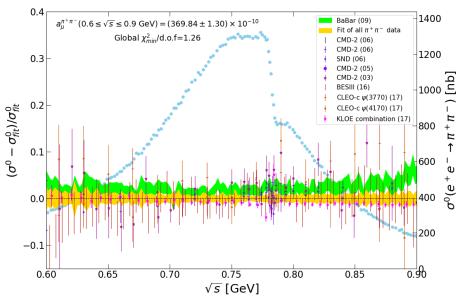
- KNT allow non-local correlations to influence mean values,
- DHMZ restrict this but retain correlations for errors and also betw. channels]
- σ^0_{had} means the `bare' cross section, i.e. <u>excluding</u> `running coupling' (VP) & ISR effects, but including Final State (γ) Radiation; data are subject to Radiative Corrections

$\mathsf{a}_{\mathsf{H}}^{\mathsf{HVP}}$: Landscape of $\sigma_{\mathsf{had}}(\mathsf{s})$ data & most important $\pi^{\scriptscriptstyle{+}}\pi^{\scriptscriptstyle{-}}$ channel



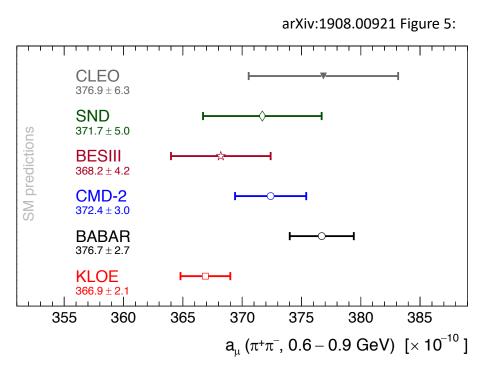
[KNT18, PRD97, 114025]

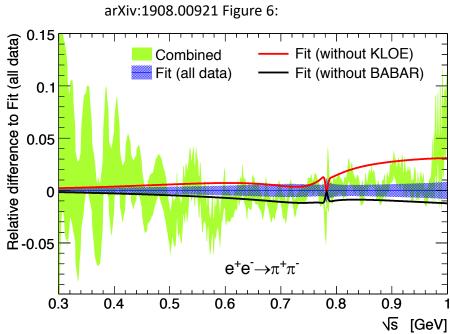

- hadronic channels for energies below 2 GeV
- dominance of 2π


$\pi^+\pi^-$:

- Combination of >30 data sets, >1000 points, contributing >70% of total HVP
- Precise measurements from 6 independent experiments with different systematics and different radiative corrections
- Data sets from Radiative Return dominate
- Some tension in data accounted for by local χ^2_{min} inflation and via WP merging procedure

HVP: $\pi^+\pi^-$ channel [KNT19, Phys. Rev. D 101(2020)1, 014029]





- Tension between different sets, especially between the most precise 4 sets from BaBar and KLOE
- Inflation of error with local χ^2_{min} accounts for tensions, leading to a ~14% error inflation
- Important role of **correlations**; their treatment in the data combination is crucial and can lead to significant differences between different combination methods, covered by WP merging

HVP: $\pi^+\pi^-$ channel [DHMZ, Eur. Phys. J. C 80(2020)3, 241]

- In addition they employ a fit, based on analyticity + unitarity + crossing symmetery, similar to Colangelo et al. and Ananthanarayan+Caprini+Das, leading to stronger constraints/lower errors at low energies
- For 2π , based on difference between result for $a_{\mu}^{\pi\pi}$ w/out KLOE and BaBar, sizeable additional systematic error is applied and mean value adjusted

HVP: White Paper comparison & merging procedure

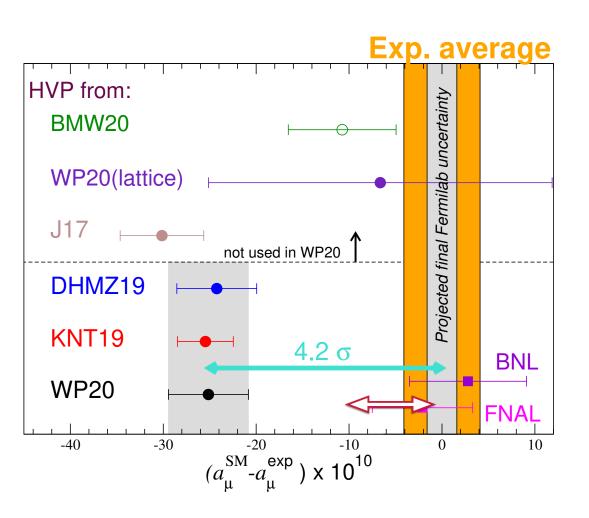
Detailed comparisons by-channel and energy range between direct integration results:

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
[3.7, ∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2

+ evaluations using unitarity & analyticity constraints for $\pi\pi$ and $\pi\pi\pi$ channels [CHS 2018, HHKS 2019]

HVP: White Paper comparison & merging procedure

Conservative merging procedure developed during 2019 Seattle TI workshop:


- Accounts for the different results obtained by different groups based on the same or similar experimental input
- Includes correlations and their different treatment as much as possible
- Allows to give one recommended (merged) result, which is conservative w.r.t.
 the underlying (and possibly underestimated) uncertainties
- Note: Merging leads to a bigger error estimate compared to individual evaluations
- $a_{\mu}^{HVP, LO} = 693.1 (4.0) \times 10^{-10}$ is the result used in the WP `SM2020' value
- This result does not include lattice, but is compatible with published lattice results apart from the BMW prediction:

$$a_{\mu}^{HVP, LO}$$
 (BMW) = 707.5 (5.5) × 10⁻¹⁰ [Nature]

Efforts are ongoing in the community to check their result, with a topical online workshop from the g-2 Theory Initiative in November 2020 shedding first light.

Muon g-2 SM prediction from the TI WP vs FNAL+BNL

Experiment vs. theory with the FNAL g-2 Run-1 result announced 7th April:

SM prediction:

$$a_{\mu}^{\text{SM}} = 116\,591\,810(43) \times 10^{-11}$$

FNAL E989 (2021):

$$a_u^{\text{E989}} = 116\,592\,040(54) \times 10^{-11}$$

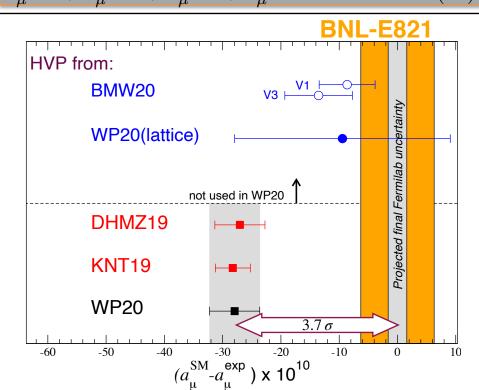
Combined with BNL E821 (2004):

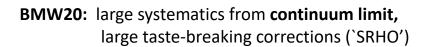
$$a_{\mu}^{\text{exp}} = 116\,592\,061(41) \times 10^{-11}$$

$$a_{\mu}^{\text{SM}} - a_{\mu}^{\text{exp}} = 251(59) \times 10^{-10}$$
 (4.2 σ)

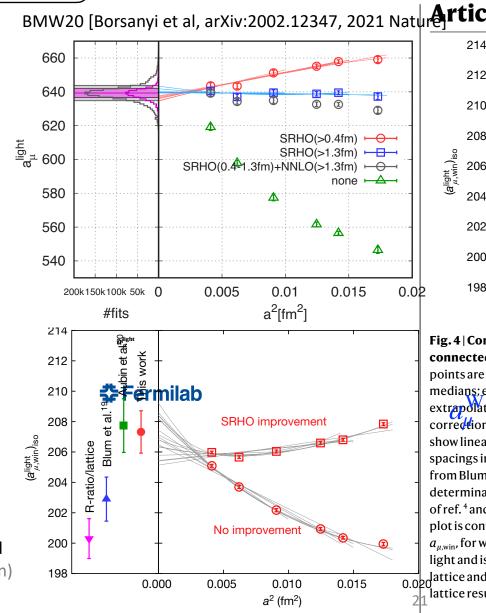
Outlook & conclusions

- The still unresolved muon g-2 discrepancy has triggered new experiments and a lot of theory activities, including and helped by the Muon g-2 Theory Initiative
- Much progress has been made for HLbL which previously was seen as the bottleneck.
 New data driven dispersive approaches & lattice have confirmed earlier model estimates and now allow a reliable error estimate, and more work is in progress
- For HVP dispersive, the TI published a conservative & robust consensus.
 Soon new hadronic data for 2π will come from BaBar, CMD-3, BESIII and Belle-II
- Longer term: direct HVP measurement planned with e-μ scattering: **MUonE** at CERN
- Lattice has started to deliver impressive results with high precision.


 Further work needed and ongoing to scrutinize, check & improve different approaches
- The Muon g-2 Theory Initiative will continue to facilitate this work and to publish agreed & conservative SM predictions for g-2 prior to new experimental results
- With the WP20 SM prediction and the first g-2 result from FNAL,


the discrepancy stands at 4.2 o and is more intriguing than ever.

Extras/discussion


widon q-z. experiment vs theory data-dratticeysterRatresu

 $116591810(43) \times 10^{-11}$

- upper right panel: limit and uncertainty estimation
- lower right panel: limit for central 'window' compared to other lattice and data-driven results (3.7σ tension)

214

212

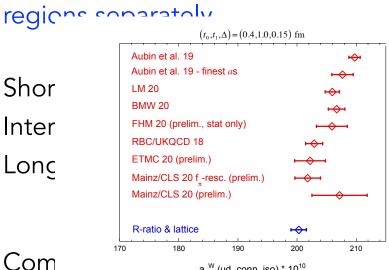
210

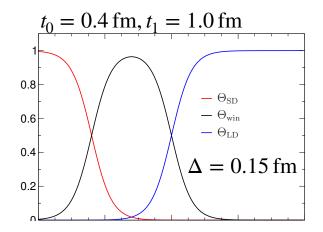
208

206

204

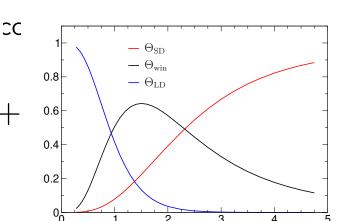
202


200


198

Lattice HVP: Crbatticeks/WPncGrosseGbecks

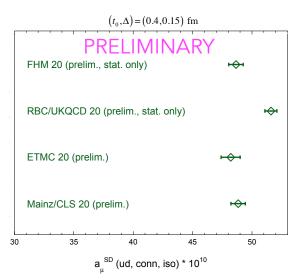
$$a_{\mu}^{\mathrm{HVP,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dt \, \tilde{w}(t) \, C(t)$$

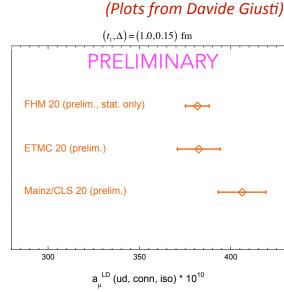

Use windows in Euclidean time to consider the different time

• Com $a_{\mu}^{W}(ud, conn, iso) * 10^{10}$ limits,...,

$$a_{\mu} = a_{\mu}^{\mathrm{SD}} + a_{\mu}^{\mathrm{W}} +$$

Lattice HVP: <u>Cratticeeky Pwindows rotteeks II</u>)


H. Wittig @ Lattice HVP workshop


$$a_\mu = a_\mu^{\rm SD} + a_\mu^{\rm W} + a_\mu^{\rm LD}$$

$$t_0 = 0.4 \text{ fm}, t_1 = 1.0 \text{ fm}$$

 $\Delta = 0.15 \text{ fm}$

"Window" quantities

 $(I_0,I_1,\Delta) = (0.4,1.0,0.15) \text{ fm}$ Aubin et al. 19
Aubin et al. 19 - finest as LM 20 BMW 20 FHM 20 (prelim., stat only) RBC/UKQCD 18 ETMC 20 (prelim.) Mainz/CLS 20 (prelim.) PRELIMINARY R-ratio & lattice $a^W \text{ (ud, conn, iso)} * 10^{10}$

- Straightforward reference quantities
- Can be applied to individual contributions (light, strange, charm, disconnected,...)
- Large discrepancies between different results, also with data-driven: BMW vs KNT: 3.7σ
- Individual results must sum up, and different groups & discretisations must agree (universality)

au HLbL: Hadronic Light-by-Light: Dispersive approach

For HVP
$$\Rightarrow$$
 2 Im \longrightarrow had. $\int d\Phi \left| - \sqrt{\Phi} \right|^2 \Rightarrow \operatorname{Im}\Pi_{\mathrm{had}}(s) = \left(\frac{s}{4\pi\alpha}\right)\sigma_{\mathrm{had}}(s)$

For HLbL $\Rightarrow \Pi_{\mu\nu\lambda\sigma} = \Pi^{\mathrm{pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathrm{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$
 $\Rightarrow \longrightarrow$ $+ \cdots \longrightarrow$ $+$

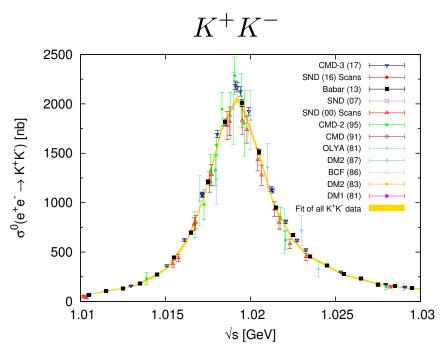
⇒ Dominated by pole (pseudoscalar exchange) contributions

- \Rightarrow Sum all possible diagrams to get $a_{\mu}^{\rm HLbL}$
- See also review by Danilkin+Redmer+Vanderhaeghen using dispersive techniques estimates $(8.7 \pm 1.3) \times 10^{-10}$ [Prog. Part. Nucl. Phys. 107 (2019) 20]
- With new results & progress, L-by-L can now be reliably predicted! ✓

Rad. Corrs.: Final State γ Radiation

- Real + virtual, must be included in σ^0_{had} as part of the hadronic dynamics,
- but some events with real radiation cut-off by experimental analyses (no problem if γ missed and event counted, but possible problem of mis-identifies)
- Experiments (or compilations) account for this and add FSR back;
 - based on MC and scalar QED for pions (detailed studies, checked to work well)
 - contributes to systematic uncertainties
 - intrinsic part of Radiative Return analyses of dominant recent data sets

Notes:


- at low energies and at resonances, hard radiation is limited by phase space
- different compilations apply **additional uncertainty** to cover possible problems of the **FSR** (& **VP**/undressing) treatment, e.g.
- ► KNT: $\delta a_{\mu}^{had, FSR} = 7.0 \times 10^{-11}$, and also $\delta a_{\mu}^{had, VP} = 2.1 \times 10^{-11}$

a_u^{HVP}: Hadronic tau decay data

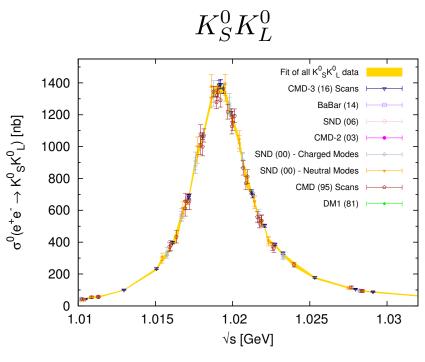
- Historically, hadronic tau decay data, e.g. $au^- o \pi^0 \pi^- \nu_ au$, were used to improve precision of e⁺e⁻ based evaluations
- However, with the increased precision of the e⁺e⁻ data there is now limited merit in this (DHMZ have dropped it), and
- The required iso-spin breaking corrections re-introduce a model-dependence and connected systematic uncertainty (there is, e.g., no ρ - ω mixing in τ decays)
- Quote from the WP, where this approach is discussed in detail:

"Concluding this part, it appears that, at the required precision to match the e^+e^- data, the present understanding of the IB corrections to τ data is unfortunately not yet at a level allowing their use for the HVP dispersion integrals. It remains a possibility, however, that the alternate lattice approach, discussed in Sec. 3.4.2, may provide a solution to this problem."

HVP: (subleading) KK channels [KNT18, PRD97, 114025]

New data:

BaBar: [Phys. Rev. D 88 (2013), 032013.] SND: [Phys. Rev. D 94 (2016), 112006.]


CMD-3: [arXiv:1710.02989.]

Note: CMD-2 data [Phys. Lett. B 669 (2008) 217.] omitted as waiting reanalysis.

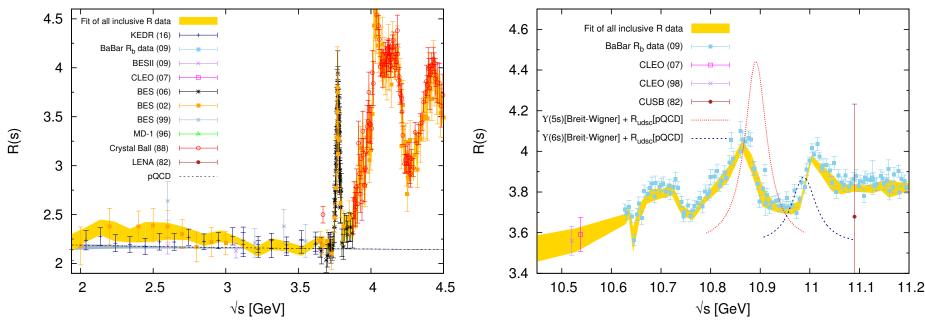
$$a_{\mu}^{K^+K^-} = 23.03 \pm 0.22_{\text{tot}}$$

HLMNT11: $22.15 \pm 0.46_{\text{tot}}$

Large increase in mean value

New data:

BaBar: [Phys. Rev. D 89 (2014), 092002.] CMD-3: [Phys. Lett. B 760 (2016) 314.]


$$a_{\mu}^{K_S^0 K_L^0} = 13.04 \pm 0.19_{\text{tot}}$$

HLMNT11: $13.33 \pm 0.16_{tot}$

Large changes due to new precise measurements on ϕ

HVP: σ_{had} inclusive region [KNT18]

ightharpoonup New KEDR inclusive <math>R data [Phys.Lett. B770 (2017) 174-181, Phys.Lett. B753 (2016) 533-541] and BaBar R_b data [Phys. Rev. Lett. 102 (2009) 012001.].

KEDR data improves the inclusive data combination below $c\bar{c}$ threshold

 R_b resolves the resonances of the $\Upsilon(5S-6S)$ states.

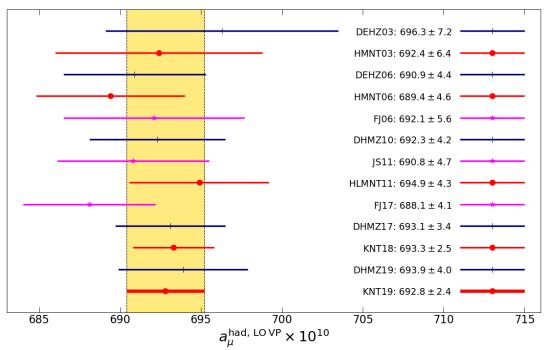
 \implies Choose to adopt entirely data driven estimate from threshold to 11.2 GeV

$$a_{\mu}^{\text{Inclusive}} = 43.67 \pm 0.17_{\text{stat}} \pm 0.48_{\text{sys}} \pm 0.01_{\text{vp}} \pm 0.44_{\text{fsr}} = 43.67 \pm 0.67_{\text{tot}}$$

Channel	Energy range [GeV]	$a_{\mu}^{\mathrm{had,LOVP}} \times 10^{10}$	$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \times 10^4$	New data
	Chiral perturbation th	eory (ChPT) threshold contr	ibutions	
$\pi^0\gamma$	$m_{\pi} \le \sqrt{s} \le 0.600$	0.12 ± 0.01	0.00 ± 0.00	
$\pi^+\pi^-$	$2m_{\pi} \le \sqrt{s} \le 0.305$	0.87 ± 0.02	0.01 ± 0.00	
$\pi^+\pi^-\pi^0$	$3m_{\pi} \le \sqrt{s} \le 0.660$	0.01 ± 0.00	0.00 ± 0.00	
ηγ	$m_{\eta} \le \sqrt{s} \le 0.660$	0.00 ± 0.00	0.00 ± 0.00	
	Data based c	hannels ($\sqrt{s} \le 1.937 \text{ GeV}$)		
$\pi^0\gamma$	$0.600 \le \sqrt{s} \le 1.350$	4.46 ± 0.10	0.36 ± 0.01	[65]
$\pi^+\pi^-$	$0.305 \le \sqrt{s} \le 1.937$	502.97 ± 1.97	34.26 ± 0.12	[34,35]
$\pi^+\pi^-\pi^0$	$0.660 \le \sqrt{s} \le 1.937$	47.79 ± 0.89	4.77 ± 0.08	[36]
$\pi^+\pi^-\pi^+\pi^-$	$0.613 \le \sqrt{s} \le 1.937$	14.87 ± 0.20	4.02 ± 0.05	[40,42]
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$0.850 \le \sqrt{s} \le 1.937$	19.39 ± 0.78	5.00 ± 0.20	[44]
$(2\pi^{+}2\pi^{-}\pi^{0})_{\text{non}}$	$1.013 \le \sqrt{s} \le 1.937$	0.99 ± 0.09	0.33 ± 0.03	
$3\pi^+3\pi^-$	$1.313 \le \sqrt{s} \le 1.937$ $1.313 \le \sqrt{s} \le 1.937$	0.23 ± 0.01	0.09 ± 0.01	[66]
$(2\pi^{+}2\pi^{-}2\pi^{0})_{\text{no}\eta\omega}$	$1.313 \le \sqrt{s} \le 1.937$ $1.322 \le \sqrt{s} \le 1.937$	0.23 ± 0.01 1.35 ± 0.17	0.51 ± 0.06	
	-			
K ⁺ K ⁻	$0.988 \le \sqrt{s} \le 1.937$	23.03 ± 0.22	3.37 ± 0.03	[45,46,49
$K_S^0 K_L^0$	$1.004 \le \sqrt{s} \le 1.937$	13.04 ± 0.19	1.77 ± 0.03	[50,51]
$KK\pi$	$1.260 \le \sqrt{s} \le 1.937$	2.71 ± 0.12	0.89 ± 0.04	[53,54]
$KK2\pi$	$1.350 \le \sqrt{s} \le 1.937$	1.93 ± 0.08	0.75 ± 0.03	[50,53,55]
ηγ	$0.660 \le \sqrt{s} \le 1.760$	0.70 ± 0.02	0.09 ± 0.00	[67]
$\eta\pi^+\pi^-$	$1.091 \le \sqrt{s} \le 1.937$	1.29 ± 0.06	0.39 ± 0.02	[68,69]
$(\eta\pi^+\pi^-\pi^0)_{\mathrm{no}\omega}$	$1.333 \le \sqrt{s} \le 1.937$	0.60 ± 0.15	0.21 ± 0.05	[70]
$\eta 2\pi^+ 2\pi^-$	$1.338 \le \sqrt{s} \le 1.937$	0.08 ± 0.01	0.03 ± 0.00	• • •
$\eta\omega$	$1.333 \le \sqrt{s} \le 1.937$	0.31 ± 0.03	0.10 ± 0.01	[70,71]
$\omega(\to \pi^0 \gamma) \pi^0$	$0.920 \le \sqrt{s} \le 1.937$	0.88 ± 0.02	0.19 ± 0.00	[72,73]
$\eta \phi$	$1.569 \le \sqrt{s} \le 1.937$	0.42 ± 0.03	0.15 ± 0.01	• • •
$\phi \rightarrow$ unaccounted	$0.988 \le \sqrt{s} \le 1.029$	0.04 ± 0.04	0.01 ± 0.01	• • •
$\eta\omega\pi^0$	$1.550 \le \sqrt{s} \le 1.937$	0.35 ± 0.09	0.14 ± 0.04	[74]
$\eta(\to \text{npp})K\bar{K}_{\text{no}\phi\to K\bar{K}}$	$1.569 \le \sqrt{s} \le 1.937$	0.01 ± 0.02	0.00 ± 0.01	[53,75]
$p\bar{p}$	$1.890 \le \sqrt{s} \le 1.937$	0.03 ± 0.00	0.01 ± 0.00	[76]
$n\bar{n}$	$1.912 \le \sqrt{s} \le 1.937$	0.03 ± 0.01	0.01 ± 0.00	[77]
	Estimated con	tributions ($\sqrt{s} \le 1.937 \text{ GeV}$))	
$(\pi^+\pi^-3\pi^0)_{\rm no\eta}$	$1.013 \le \sqrt{s} \le 1.937$	0.50 ± 0.04	0.16 ± 0.01	
$(\pi^{+}\pi^{-}4\pi^{0})_{\text{non}}$	$1.313 \le \sqrt{s} \le 1.937$	0.21 ± 0.21	0.08 ± 0.08	
$KK3\pi$	$1.569 \le \sqrt{s} \le 1.937$	0.03 ± 0.02	0.02 ± 0.01	
$\omega(\to npp)2\pi$	$1.285 \le \sqrt{s} \le 1.937$ $1.285 \le \sqrt{s} \le 1.937$	0.10 ± 0.02	0.02 ± 0.01 0.03 ± 0.01	
$\omega(\to npp)2\pi$ $\omega(\to npp)3\pi$	$1.322 \le \sqrt{s} \le 1.937$	0.17 ± 0.02 0.17 ± 0.03	0.06 ± 0.01	
$\omega(\to npp)SK$ $\omega(\to npp)KK$	$1.569 \le \sqrt{s} \le 1.937$ $1.569 \le \sqrt{s} \le 1.937$	0.00 ± 0.00	0.00 ± 0.01 0.00 ± 0.00	•••
$\eta \pi^+ \pi^- 2\pi^0$	$1.338 \le \sqrt{s} \le 1.937$ $1.338 \le \sqrt{s} \le 1.937$	0.00 ± 0.00 0.08 ± 0.04	0.00 ± 0.00 0.03 ± 0.02	
•	·	butions ($\sqrt{s} > 1.937 \text{ GeV}$)		
Inclusive channel	$1.937 \le \sqrt{s} \le 11.199$	43.67 \pm 0.67	82.82 ± 1.05	[56,62,63]
J/ψ	1.937 \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\)	6.26 ± 0.19	7.07 ± 0.22	[50,02,03
ψ'	• • •	1.58 ± 0.04	2.51 ± 0.06	
$\Upsilon(1S-4S)$	•••	0.09 ± 0.00	1.06 ± 0.02	
pQCD	$11.199 \le \sqrt{s} \le \infty$	2.07 ± 0.00	124.79 ± 0.10	•••
Total	$m_{\pi} \le \sqrt{s} \le \infty$	693.26 ± 2.46	276.11 ± 1.11	

Table from KNT18, PRD 97(2018)114025

Update: KNT19 LO+NLO HVP for

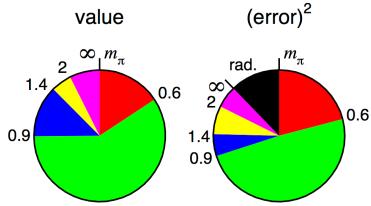

 $a_{e,\mu,\tau}$ & hyperfine splitting of muonium

PRD101(2020)014029

Breakdown of HVP contributions in ~35 hadronic channels

From 2-11 GeV, use of inclusive data, pQCD only beyond 11 GeV

History plot of a_u^{HVP} w. min. model dep. Pies.

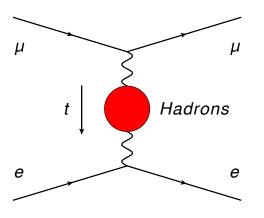


- Stability and consolidation over two decades thanks to more and better data input and improved compilation procedures
- Compare with `merged' DHMZ & KNT WP20 value:

$$a_{\mu}^{had, LO VP}(WP20) = 693.1(4.0) \times 10^{-10}$$

Pie diagrams [KNT]:

- error still dominated by two pion channel
- significant contribution to error from additional uncertainty from radiative corrections


a_μ (SM): White Pa Str Miles Pales (SM): White Pa Str Miles (SM) (SM): White Pa Str Miles (SM) (SM): White Pales (SM) (SM): White Pales (SM) (SM): White Pales (SM): White P

White Paper [T. Aoyama et al, arXiv:2006.04822], 132 authors, 82 institutions, 21 countries

Contribution	Value $\times 10^{11}$	References
Experiment (E821)	116 592 089(63)	Ref. [1]
$\overline{\text{HVP LO }(e^+e^-)}$	6931(40)	Refs. [2–7]
HVP NLO (e^+e^-)	-98.3(7)	Ref. [7]
HVP NNLO (e^+e^-)	12.4(1)	Ref. [8]
HVP LO (lattice, <i>udsc</i>)	7116(184)	Refs. [9–17]
HLbL (phenomenology)	92(19)	Refs. [18–30]
HLbL NLO (phenomenology)	2(1)	Ref. [31]
HLbL (lattice, <i>uds</i>)	79(35)	Ref. [32]
HLbL (phenomenology + lattice)	90(17)	Refs. [18–30, 32]
QED	116 584 718.931(104)	Refs. [33, 34]
Electroweak	153.6(1.0)	Refs. [35, 36]
$HVP(e^+e^-, LO + NLO + NNLO)$	6845(40)	Refs. [2–8]
HLbL (phenomenology + lattice + NLO)	92(18)	Refs. [18–32]
Total SM Value	116 591 810(43)	Refs. [2–8, 18–24, 31–36]
Difference: $\Delta a_{\mu} := a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}}$	279(76)	

HVP from electron-m
$$K(s) = \int_0^1 dx \, \frac{x^2 \, (1-x)}{x^2 + (1-x) \, (s/m_\mu^2)}$$
 e-like

M. Passera @ HVP KEK 2018 [A. Abbiendi et al, arXiv:1609.08987, EPJC 2017]

$$a_{\mu}^{\text{\tiny HLO}} = \frac{\alpha}{\pi} \int_0^1 dx \, (1 - x) \, \Delta \alpha_{\text{had}}[t(x)]$$
$$t(x) = \frac{x^2 m_{\mu}^2}{x - 1} < 0$$

 $\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of α in the space-like region. It can be extracted from scattering data!

- use CERN M2 muon beam (150 GeV)
- Physics beyond colliders program @ CERN
- LOI June 2019
- Jan 2020: SPSC recommends pilot run in 2021
- goal: run with full apparatus in 2023-2024