
HEP-CCE

High Energy Physics
Center for Computational Excellence

HSF - Compute Accelerator Forum
February 9 2022

Peter van Gemmeren (ANL), Charles Leggett (LBNL), Saba Sehrish (FNAL)
for the HEP-CCE project

HEP-CCEWhy a HEP Center for Computational Excellence?
HEP computing resource challenges

10x data, 10x complexity @ HL-LHC
● in 2030, LHC experiments will need

○ O(100) PFlops/s sustained,
○ O(1) Exabyte/year

HEP long-term investment in HPC
● Platform of choice for Cosmic Frontier
● LHC experiments among top users of

NERSC Cori (~10% cycles in 2021)

Challenges:
● Run multiple HEP workflows at

O(10)PF/s sustained on multiple
heterogeneous Exascale systems

● Match HEP I/O requirements to HPC
filesystems and networking

HEP

2

HEP-CCEThe HEP Computing Universe Today

3

HEP-CCEThe HPC Computing Universe Today

4

HEP-CCEHEP is (slowly) Embracing Heterogeneous Computing

Challenges:
Hundreds of computing sites (grid clusters + HPCs + clouds)
Hundreds of C++ kernels (several million LOC)
Hundreds of data objects (dynamic, polymorphic)
Hundreds of non-professional developers (domain experts)

Opportunity:
Scale of experiments and community provides significant R&D firepower

scores of active groups, will not attempt to list

Current Focus:
Online event filtering, offline pattern recognition, detector simulation

5

HEP-CCEWhat is HEP-CCE?
Three-year (2020-2023) pilot project

● Develop practical solutions to port hundreds of kernels
to multiple platforms

● Collaborate with HPC & networking communities on
data-intensive use cases

1. PPS: Portable parallelization strategies
● exploit massive concurrency
● portability requirements

2. IOS: HEP I/O and HPC storage issues
● new data models (memcpy-able, SOA,...)
● fine-grained I/O, event batching (XPU offloading)

3. EG: Optimizing event generators
4. CW: Running complex workflows on HPCs

Open collaboration
https://indico.fnal.gov/category/1053/

https://www.anl.gov/hep-cce

Four US labs, six experiments, ~12 FTE over ~35
collaborators. Salman Habib PI, Paolo Calafiura co-PI

6

https://indico.fnal.gov/category/1053/
https://www.anl.gov/hep-cce

HEP-CCE

Handoff to Peter and Saba for IOS

7

HEP-CCEPortable Parallelization Strategies
Investigate a range of software portability solutions:

● Kokkos / Raja / Alpaka
● SYCL / dpc++ / hipSYCL
● OpenMP / OpenACC
● std::parallel::execution (std::par)

Port a small number of HEP testbeds to each portability solution
● Patatrack Pixel Tracking (CMS) → arXiv:2008.13461, arXiv:2104.06573
● p2r (CMS) → whitepaper
● WireCell Toolkit (DUNE)
● FastCaloSim(ATLAS) → arXiv:2103.14737
● ACTS

Defined a set of metrics to evaluate portability solutions, as applied to our testbeds
● Productivity, cross-platform performance, broader impact, long-term sustainability, etc

Make recommendations to the experiments
● Must address needs of both LHC style workflows (many modules and many developers), and

smaller/simpler workflows

● products are rapidly evolving
● some hope of seeing emergence of

industry standards at language level

8

https://arxiv.org/abs/2104.06573
https://arxiv.org/abs/2008.13461
https://arxiv.org/abs/2104.06573
https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF1_CompF0-EF0_EF0-055.pdf
https://indico.fnal.gov/event/46114/contributions/201009/attachments/137052/170715/2020-11-05_all-hands_meeting_v2.0.pptx
https://arxiv.org/abs/2103.14737

HEP-CCECCE/PPS: Software Support Chart

Platform support still a moving target: this chart is updated often!

OpenMP
Offload Kokkos dpc++

/ SYCL HIP CUDA Alpaka

NVIDIA
GPU

codeplay and
intel/llvm

AMD GPU experimental
(feature complete)

via hipSYCL
and intel/llvm

Intel GPU prototype
HIPLZ: very early

development prototype

CPU

Fortran

FPGA possibly via
SYCL

Supported

Under
Development

3rd Party

Not Supported

9

time to add
python!

HEP-CCEMetrics for Evaluation of PPS Platform
Ease of learning (experts and novices) and extent of
code modification

Code conversion
∙ CPU → PPL / CUDA → PPL / PPL → PPL

Impact on other existing code
∙ Event Data Model
∙ does it take over main(), does it affect the threading or
execution model, etc

Impact on existing toolchain and build infrastructure
∙ do we need to recompile entire software stack?
∙ cmake / make transparencies

Hardware mapping
∙ evolving support for new hardware features
∙ new architectures

Feature availability
∙ reductions, kernel chaining, callbacks, etc
∙ concurrent kernel execution

Ease of Debugging

Address needs of all types of workflows
∙ scaling with # kernels / application
∙ scaling with # developers
∙ compute vs memory bound

Long-term sustainability and code stability
∙ Support model of technologies ➜ stability of implementation

if underlying libraries (CUDA) change
∙ CUDA is going to be around for a long time, what about the

portability solutions?
∙ Long term support for technologies by vendors

Compilation time
∙ separate builds for different architectures?

Performance: CPU and GPU
∙ degradation of CPU code?

Validation

Aesthetics
∙ compatibility with C++ standards

10

su
bj

ec
tiv

e
an

d
ob

je
ct

iv
e

HEP-CCECCE/PPS: CMS Patatrack Pixel Tracking
A frozen, standalone version of CMS Heterogeneous pixel track and vertex reconstruction

∙https://github.com/cms-patatrack/pixeltrack-standalone/
∙reconstruct pixel-based tracks and vertices on the GPU
∙leverage existing support in CMSSW for threads and on-demand reconstruction
∙minimize data transfer

Copy the raw data to the GPU
Run multiple kernels to perform the various steps

∙decode the pixel raw data
∙cluster the pixel hits (SoA)
∙form hit doublets
∙form hit quadruplets (or ntuplets) with a Cellular automaton algorithm
∙clean up duplicates

Take advantage of the GPU computing power to improve physics
∙fit the track parameters (Riemann fit, broken line fit) and apply quality cuts
∙reconstruct vertices

Copy only the final results back to the host (optimised SoA)
∙convert to legacy format if requested

11

https://github.com/cms-patatrack/pixeltrack-standalone/

HEP-CCEPatatrack : Results
● Versions:

○ Direct: CPU, CUDA, HIP
○ Kokkos: CPU (Serial, POSIX Threads), CUDA, HIP
○ Alpaka: CPU (Serial, TBB), CUDA

■ Developed by CERN group, first results shown in ACAT21 poster
● Snapshot of performance comparison of direct vs Kokkos versions on Cori

GPU
○ Intel Xeon Gold 6148 (Skylake, 20 cores, 2 threads/core) + NVIDIA V100

● Showed also in vCHEP21 that the throughput with CUDA Unified Memory
was about 3x smaller than with explicit memory management

12

Running 1-thread
processes

Direct CPU Kokkos Serial

1 process (node free) 25.2 ± 0.4 events/s 23.9 ± 0.4 events/s

40 processes (full socket) 460 ± 10 events/s 260 ± 10 events/s

1 process Direct CUDA Kokkos CUDA

1 concurrent event 891 ± 5 events/s 582 ± 6 events/s

3 concurrent events 1725 ± 4 events/s 996 ± 4 events/s

7 concurrent events 2202 ± 9 events/s 985 ± 1 events/s

https://indico.cern.ch/event/855454/contributions/4604992/
https://doi.org/10.1051/epjconf/202125103035

HEP-CCECCE/PPS: Wire-Cell Toolkit
Much of DUNE software is based on LArSoft, which is single-threaded and has high memory
usage.
Wire-Cell Toolkit (WCT) is a new standalone C++ software package for Liquid Argon Time
Projection Chamber (TPC) simulation, signal processing, reconstruction and visualization.

∙Written in modern C++ (C++17 standard)
∙Follows data flow programming paradigm
∙Supports both single-threaded and multi-threaded execution with the choice determined by user
configuration.

∙ MT graph execution supports pipelining, more than one "event" may be in flight through the flow graph.
∙Runs from stand-alone command line program or from a LArSoft module.

WCT includes central elements for DUNE data analysis, such as signal and noise simulation,
noise filtering and signal processing

∙CPU intensive; currently deployed in production jobs for MicroBooNE and ProtoDUNE
∙Some algorithms may be suited for GPU acceleration

Preliminary CUDA port of the signal processing and simulation modules show promising
speedups

13

HEP-CCEWire-Cell : LArTPC Simulation
2D Convolution based LArTPC Simulation:
● satisfying data-simulation consistency
● more computing workload than 1D version
● large simulation samples needed for AI/ML

Three major steps - a representative workflow
● Rasterization: depositions ⟶ patches (small 2D array,

~20×20), # depo ~100k for cosmic ray event
● Scatter adding: patches ⟶ grid (2D array, 10k×10k)
● FFT: convolution with detector response

➢ Kokkos implementation achieved moderate speedups
cf. original CPU on multicore CPU, AMD and NVIDIA
GPUs when running single process

➢ Further speedups by running multiple processes to
share the GPUs (HTC mode)
○ GPU under-utilized with 1 process

14

Kokkos

HEP-CCEP2R (Propagate-to-Radial)
● A miniapp (~1k lines of standalone code) running “backbone” functions for track fitting

● Kernels for track propagation and Kalman update in the radial direction
● Extracted from a full application (mkFit)
● Intend to explore more technologies with a lightweight program

● Versions implemented:
TBB, CUDA, Kokkos, OpenACC, std::par (nvc++), HIP, Alpaka

● Performance compared on NVIDIA V100 and AMD Vega 64
○ Throughput measured with the input data already on the GPU

15

Nvidia V100 AMD GPU

Kokkos: ~60%

HEP-CCECCE/PPS: ATLAS FastCaloSim
ATLAS Calorimeter simulation measures the energy
deposition of O(1000) particles after each collision
Full detailed simulation uses Geant4

∙very slow due to complex LAr Geometry
Fast calorimeter simulation uses parametrization

∙less accurate, but much faster than Geant4
FastCaloSimV2: a relatively self-contained code base for fast ATLAS
parametrized calorimeter simulation

Initial CUDA port from BNL group
∙modify/flatten data structures (eg Geometry) to
offload to GPU
∙multi-stage CUDA kernels to generate histograms
∙current efficiency hampered by small work sizes
∙need to use more particles or gang events

16

HEP-CCEFastCaloSim : Results

17

Kokkos
● exercised all backends: CUDA, HIP, Intel, pThread, OpenMP
● Kokkos/CUDA performs similarly to pure CUDA

○ 5x faster event loop for 65GeV electrons
○ 40x faster for 4TeV electrons

● increased penalties from launch latencies and memory init
● hip/AMD considerably slower than CUDA

○ Kokkos/HIP performs similarly to HIP
● Kokkos/OMP has 2.5x perf of original CPU at 12 threads

SYCL
● Ten 'runs' of single-electron and top quark pair production

simulations
○ AMD CPU host backend (TBB, on OpenCL)
○ Intel CPU with OpenCL backend

● ~4x faster than CPU for single electrons when executed using
GPU offload

● Top quark simulations achieve no gains on GPU due to lack of
inter event parallelism and run-time loading of parametrizations on
host (more secondaries)

Same source runs on 4 different platform

HEP-CCEBroader Impacts: Portable Random Number Generation
HEP MC simulations need billions of
high-quality, reproducible pseudo-random
numbers

Contributed to oneMKL a cross-platform SYCL
random number generator (RNG) API
● Run our SYCL test applications single-source

across all major CPU and GPU platforms
● relies on platform-specific RNG implementations

(e.g., cuRAND and rocRAND), and SYCL
interoperability API
○ nearly zero impact on performance

■ future work may include writing pure SYCL RNG
kernels to achieve sequence reproducibility
across platforms
● at the expense of not leveraging pre-existing

vendor-specific optimizations

18

arxiv:2109.01329

https://github.com/oneapi-src/oneMKL/pull/75

HEP-CCE
Event Generators: Platform Independent MadGraph5

● MadGraph5 is one of the primary event generators used by
ATLAS & CMS and will be responsible for generating a large
portion of simulated collisions in the next decade.

● MadGraph5 developers (Olivier Mattelaer, UCLouvain & CERN)
are working to add CUDA support.

● HEP-CCE is adding backends that use Kokkos, Intel OneAPI, and
Sycl, broadening reach to architectures expected on future
Exascale machines.

● This effort benefits from an Aurora Early Science Project award
received by the ATLAS group at Argonne which provides early
access to Intel GPUs and support from Intel/LCF experts.

● This work aims to enable running MadGraph matrix element
calculations on NVidia, Intel, and AMD GPUs

● The codes are being developed here, still a work in progress:
https://github.com/madgraph5/madgraph4gpu

Nathan Nichols
J. Taylor Childers

Nathan Nichols
J. Taylor Childers

https://launchpad.net/mg5amcnlo
https://github.com/madgraph5/madgraph4gpu

HEP-CCEKokkos: Interim Experiences
● High level programming model

○ Could be able to give reasonable performance out of the box on new architectures different
from CPU vector units or GPUs

● Backends for NVIDIA, AMD and Intel GPUs, pThreads and OpenMP, Serial CPU
● APIs of earlier versions have been very stable
● Responsive developer community
● Depending on complexity of code, speed can approach that of native backend

○ but usually falls short as complexity and feature use increases
● Current challenges for use in HEP data processing frameworks

○ Requires a compiled runtime library that supports exactly one device architecture
○ CPU Serial backend is thread safe but not thread efficient (one mutex to rule them all)

■ Efficiency is being improved
○ Provides multidimensional array data type, but no special support for structured data

■ I.e. no help for crafting (Ao)SoAs, jagged arrays
○ No unified, portable interface for FFT algorithms

■ Such interface is being worked on

20

HEP-CCESYCL : Interim Experience and Feedback

21

C++-based API makes translation/code-conversion
relatively straightforward

∙ Single-source (CPU, GPU code together)
∙ dpct (CUDA, HIP -> SYCL) conversion tool

DAG-based runtime satisfies inter-kernel
dependencies (buffers)

∙ USM requires more explicit control from developer,
but generally more performant

Integrates well with existing Makefile and CMake
projects

∙ Compile SYCL code separately as libraries and link
∙ No need to recompile full stack

Demonstrated ability to run same source on four
major vendor hardware

∙ Even without OCL or Level-Zero backends
∙ No experience yet with FPGAs

Numerous new features in 2020 specification (tested)
∙ Built-in optimized parallel reductions
∙ Work-group and sub-group algorithms for efficient

parallel operations between work-items
∙ Sub-devices (currently limited to CPU with OCL but

could prove extremely useful)
∙ Atomic operations aligned with C++20
∙ Improved interoperability for more efficient acceleration

of third-party libraries (open or proprietary)

Still growing ecosystem (as of 31/10/21)

HEP-CCEstd::par : Preliminary Investigations
● NVIDIA nvc++ compiler is new and undergoing continuous development

○ can't compile ROOT yet
○ not well integrated with cmake - requires wrapper scripts to fix
○ some things work in standalone examples don't work in more

complex environments with multiple shared libraries built with
different compilers

○ could not exercise multicore backend
● Offers very interesting upgrade / sidegrade path

○ CPU -> GPU and multicore
○ GPU (CUDA) -> CPU/multicore

● Very simple changes to CUDA code
○ requires memory allocation on host by nvc++ for USM
○ kernel launch syntax

● Not as performant as CUDA
○ impact of USM? thrust? immature compiler?
○ also slower build time

● Similar speed to original CPU
○ sometimes slightly faster!

22

HEP-CCEStatus of Ports for Testbeds

23

Kokkos SYCL OpenMP Alpaka std::par

Patatrack

WireCell

p2R

FastCaloSim

ACTS

HEP-CCEOutlook
Prioritized PPS and IOS for initial work, EG and CW are taking off
● Significant developments and results, with many valuable lessons learned

Project work presented at multiple venues and conferences with positive
feedback, good response from experiments
● Excellent interactions with both software and hardware providers

Ramping up effort (big challenge these days!)
● Recruiting more developers from the experiments and DOE/ASCR experts
● Several hires of postdocs and summer students

Potential for significant impact on the experiments
● HEP-CCE will produce strategies tested on prototypes
● Production-level implementations will require direct experiment involvement

24

HEP-CCE

Thanks!
https://www.anl.gov/hep-cce

hep-cce@anl.gov

Special thanks to Paolo Calafiura, Taylor Childers, Stefan Hoeche, Matti Kortelainen, Martin Kowk, Meifeng Lin, Vince
Pascuzzi, Shane Snyder, Peter van Gemmeren for the material they contributed. All mistakes and misrepresentations are mine
only.

25

https://www.anl.gov/hep-cce

HEP-CCECast of Characters
PPS

∙ Taylor Childers (ANL)

∙ Mark Dewing (ANL)

∙ Zhihua Dong (BNL)

∙ Oli Gutsche (FNAL)

∙ Michael Kirby (FNAL)

∙ Matti Kortelainen (FNAL)

∙ Martin Kwok (FNAL)

∙ Kyle Knopfel (FNAL)

∙ Charles Leggett (LBNL)

∙ Meifeng Lin (BNL)

∙ Vincent Pascuzzi (BNL)

∙ Peter Nugent (LBNL)

∙ Liz Sexton-Kennedy (FNAL)

∙ Yunsong Wang (LBNL)

∙ Sam Williams (LBNL)

∙ Beomki Yeo (LBNL)

∙ Haiwang Yu (BNL)

not an official list:
open collaboration

26

IOS
∙Doug Benjamin (BNL)

∙ Jakob Blomer (CERN)

∙Suren Byna (LBNL)

∙Philippe Canal (FNAL)

∙Matthieu Dorier (FNAL)

∙Chris Jones (FNAL)

∙ Kenneth Herner (FNAL),

∙ Patrick Gartung (FNAL).

∙Rob Latham (ANL),

∙Rob Ross (ANL)

∙ Liz Sexton-Kennedy (FNAL)

∙Saba Sehrish (FNAL)

∙Shane Snyder (ANL)

∙Peter van Gemmeren (ANL)

∙Torre Wenaus (BNL)

EG
∙Enrico Bothmann (Goettingen),

∙Taylor Childers (ANL),

∙Walter Giele (FNAL),

∙Stefan Hoeche (FNAL),

∙ Joshua Isaacson (FNAL),

∙Max Knobbe (Goettingen)

HEP-CCE

Accelerators
Intel NVIDIA AMD FPGA Other

CPU Intel Aurora WLCG (HEP)
Cori GPU
Piz Daint
Tsukuba
MareNostrum

Tsukuba

AMD WLCG (HEP)
Perlmutter

Frontier
El Capitan

IBM Summit
Sierra
MareNostrum

Arm Alps Astra*

Fujitsu Fugaku

Portable Parallelization is Key for HEP

● Amazon Graviton2
● Google Cloud TPU
● Microsoft Azure
● Intel DevCloud

(in bold, systems
HEP is running on
or targeting)

x86+NVIDIA main target now

Will NVIDIA Grace change the
equation?

27

HEP-CCE
Performance Evaluation of Kokkos Implementation in wire-cell-gen

Test platform: 24-core AMD Ryzen Threadripper 3960X CPU and one
NVIDIA V100 GPU

● Initial Kokkos implementation
based off previous CUDA
implementation

● Code now runs on both
multi-core CPU and NVIDIA
GPU

● CPU SIMD vectorization also
enabled; moderate
performance gain

● GPU run time is not better than
multi-threaded CPU

○ Not enough work for
the GPU

○ Execution time now
dominated by data
initialization
(unparallelized)

Vectorization effect

