
HEP-CCE

Introduction: The HEP-CCE
IOS project

Peter van Gemmeren (ANL)
Saba Sehrish (FNAL)

for the HEP-CCE IOS team

HEP-CCECCE/IOS: Goals
IOS will focus and concentrate effort on:

○Parallel serialization/de-serialization of HEP data models
■both single node and multi-node access patterns

○Persistable data representations tuned for HPC storage systems.
■Connection to PPS exploration of portable parallelization libraries
■can benefit from Write-Once/Read-Many HEP access models

○Accessing partial, partitioned or sub-event data blocks
■ matched to specific algorithm consumption requirement

○Runtime memory mapping of data
■ exploit batched, vectorized, and data parallel operations and transforms on

columnar data.
■ taking into account CPU-XPU communication

HEP-CCE
IOS Main Activities

Understanding and achieving efficient and high performance IO
when running on HPCs

• IO profiling studies with Darshan
• Root serialization scaling studies
• Alternate IO formats and data models

• In particular investigating HDF5 as intermediate storage
• Root serialization scaling studies

• Memory-friendly data (in collaboration with the PPS group)
• Still starting out

HEP-CCECast of Characters
(snapshot)

∙Amit Bashyal (ANL)

∙Doug Benjamin (BNL)

∙ Jakob Blomer (CERN)

∙Suren Byna (LBNL)

∙Philippe Canal (FNAL)

∙Matthieu Dorier (ANL)

∙Chris Jones (FNAL)

∙ Kenneth Herner (FNAL),

∙ Patrick Gartung (FNAL).

∙

∙Rob Latham (ANL)

∙Rob Ross (ANL)

∙ Qiao Kang (LBNL)

∙ Liz Sexton-Kennedy (FNAL)

∙ Kyle Knoepfel (FNAL)

∙Saba Sehrish (FNAL)

∙Shane Snyder (ANL)

∙Peter van Gemmeren (ANL)

∙Torre Wenaus (BNL)

∙

HEP-CCE

IO profiling studies with Darshan
(Material provided by Rob, Shane, Patrick and Ken)

HEP-CCE
Darshan
From the Darshan website

• Darshan is a scalable HPC I/O characterization tool. Darshan is
designed to capture an accurate picture of application I/O behavior,
including properties such as patterns of access within files, with
minimum overhead.

• Darshan can be used to investigate and tune the I/O behavior of
complex HPC applications. In addition, Darshan’s lightweight design
makes it suitable for full time deployment for workload
characterization of large systems.

• Primarily used to characterize the I/O of MPI applications e.g. identify
I/O bottlenecks in multiple processes on multiple nodes writing to
shared files

• Records all POSIX and STDIO for each process in a darshan file
• Provides tools for generating pdf files with info for each darshan file

https://www.mcs.anl.gov/research/projects/darshan/

HEP-CCE
Using Darshan

● For non-MPI HEP applications, Darshan is built as dynamic
library that is loaded with LD_PRELOAD

● Initial work
○ Integration of Darshan into workflows
○ Darshan logs generated for ATLAS, CMS, DUNE example

workflows
○ Identified small accesses; problematic for HPC parallel file

systems
● Recent enhancements

○ Make Darshan library fork-safe
○ Add Darshan runtime configuration to control memory usage,

files to instrument/ignore, etc

HEP-CCE
Darshan log example of CMS Reconstruction

HEP-CCE

• Characterization and (ideally) tuning of ROOT I/O
workloads for use on HPC storage

• Collaboration with ROOT and experiment experts
• Realistic experiment configurations
• Identification of I/O bottlenecks worth investigating on relevant

HPC storage technologies
• Implementing changes to workflows and/or ROOT

• Workflow-aware reports using a set of Darshan logs
• DAGs of workflow phases and accessed files
• File and file system access characteristics of different workflow

phases
• More trace-based visualizations

• Write/read access patterns for files produced/consumed by
different workflow phases

What is next?

HEP-CCE

Test Framework for data formats comparison
and root serialization scaling studies
(by Chris Jones)

HEP-CCE
Storage Format Comparisons

Test storage formats for use on HPC
Compare

• Read & write performance scaling with number of available
cores

• Memory usage scaling
• File sizes
• Large scale usage impact on HPC sites

HEP-CCE
Testing Framework

Developed a simplified HEP multi-threaded framework
• based implementation on CMS’s framework

High levels of concurrency supported
• Concurrent read/process/write of events as a whole
• Concurrent read/write of individual data products within an

event
• Serial processes are scheduled by framework and never

block a thread
• e.g. if multiple events want to write to the file system their

requests are queued and only one happens a time while the
other thread can be used to do other work

HEP-CCE
Testing Framework (2)

Supports any number of storage formats
• Just implement the necessary base class interfaces
• Can read from any supported format and write to any

supported format
Can read ATLAS, CMS and DUNE experiment ROOT files

• allows testing using real world data

HEP-CCE
Write Performance testing

Used CMS’s smallest data format
Minimized time spent in reading

• Read first 100 events and then cache them to memory
• Replayed cached events over and over

Kept number threads == number of concurrent events
• Intra event concurrency helps when serialization happens

Kept all cores of machine busy
• # jobs = (# cores on machine) /(# threads in job)

HEP-CCE
Write Performance Testing Formats

Standard HEP ROOT format
• Events stored as an element in a TTree
• Each Event Data Product in its own TBranch of the TTree

Simple per Event storage format
• Designed to support concurrency

ROOT with one blob per Event
• Explicitly do object serialization concurrent
• Store all Data Products for an Event into one blob
• Compress either external (concurrently) or internal (serially)

to ROOT

HEP-CCE
Preliminary LZ4 Compression Write Results

HEP-CCE

HDF5 and Parallel IO investigations
(contributed by Amit, Qiao, Saba)

HEP-CCE
HDF5

● HDF5 (Hierarchical Data Format) is a portable, self-describing
file format designed to store large amounts of data

○ It is maintained by the HDF Group [https://www.hdfgroup.org]
○ It is widely available at HPC centers, and easily installable on laptops
○ It supports parallel IO using MPI, and has special drivers tuned for

parallel file systems at HPC centers
● A few key abstractions are:

○ datasets, which are multidimensional arrays of homogeneous types,
○ groups, which are containers of datasets and other groups, and
○ attributes, which are small metadata objects to describe groups and

datasets
● Allows efficient columnar data access for the “required” data

products

https://www.hdfgroup.org

HEP-CCEDesign assumptions

• The input data (intermediate output) is already serialized
with ROOT.
• Complex objects but presented as byte stream to HDF5

• We are not working “directly” with C++ classes that
represent data products

• We are not working with analysis-ready data either
• We are interested in designing an experiment-independent

approach, so there is no experiment specific assumptions in
the implementation.

• Will need experiment-specific set up to run it to make sure ROOT
dictionaries are available

HEP-CCE
Design details HDFOutputer
• Using 1D dataset of chars for each data product, and a

corresponding 1D dataset for size/offset per event.
• Write happens in batches; a batch corresponds to number of

events that are aggregated before a write happens
• There is one dataset create call per data product, and n write

calls covering all the data products, where n is total number of
events divided by batch size.

• A call to resize data set happens upon every write request
• Issues: Two data sets per data product generates a lot of

metadata especially when there are thousands of data
products in an event

HEP-CCEImprovements and alternate layouts for
HDFOutputer

• Reduce the number of I/O calls on meta-data related
data-sets.

• Collect the metadata for all datasets for each event and save
once.

• Once tested more thoroughly, port to the HDFOutputer.

• Implemented another HDF5 outputer by storing events as a
blob in a single event dataset

• Number of datasets is reduced to 3
• Tuning and performance evaluation underway

• Both implementations are general and rather
straightforward to adopt for incorporating parallel design

HEP-CCE
Design details HDFSource

• Read in the HDF5 data; only supports data product based
design approach

• Read one event at a time
• Locate start index of a data product and calculate end index

using EventID dataset and offsets datasets
• Able to read events randomly since we can index into

datasets as needed
• Next steps:

• Performance evaluations
• HDFSource for reading event blob format

HEP-CCE
Running tests on HPC

• Non-trivial to set up and run any experiment code on HPC
machines

• Haven’t even tried running with ATLAS or DUNE data files
on Cori

• But have locally used CMS, ATLAS and DUNE data during
development

• ATLAS is using this HDF5 design with their framework (but not in
production)

• We can run the test framework with CMS reco files, and are
evaluating performance of currently available IO modes

HEP-CCE
Adding MPI support to Root serialization

• Created an MPI-based version of root serialization
application

• Goal is to be able to evaluate multi-node performance as
well as pave the way for parallel IO using HDF5

• Current supported modes:
a. N MPI ranks able to read N input files and write N output files,

trivial, running multiple processes of root serialization all through
MPI (any input/output mode combination is supported)

b. N MPI ranks reading 1 input file and write N output files (any
input/output mode combination should work logically)

c. N MPI ranks reading N files and writing 1 output file (will only be
supported for HDF5) → Not done yet

HEP-CCE
Parallel HDF5 approach

• N number of MPI ranks participate in the reading of file(s) and
writing into 1 single output collectively.

• Writing a file collectively has the advantage that final file might
not need merging or less resource dedicated to merge the
output files.

• Since the multiple ranks are writing on the same output file, need
to figure out how to assign the position of the data within a
data-set, indexing of events etc.

• Use of MPI Functionalities to communicate with various
processes to exchange relevant information for collective IO.

• Use of Parallel-HDF5 to do the reading and writing by various
MPI nodes collectively.

• Test improvements from serial HDF5 design to do collective I/O on
writing into the HDF File.

HEP-CCE4 MPI ranks each reading 4 events from a file,
and writing collectively to a file.

The colorful blocks
show one HDF5
file. Each color
represents a
different dataset
corresponding to a
data product.
There are four
data products.
Each product per
event may have
different sizes.
What is not shown
for simplicity is
offsets and Event
ID datasets here.
All the green
arrows represent
parallel write to the
first dataset, then
all the blue arrows
represent the
second parallel
write that happens
after the first write.

MPI rank 0

MPI rank 1

MPI rank 2

MPI rank 3

1 input file with 16
events

With event blob approach, this design
becomes much simpler.

HEP-CCE
GPU friendly Data Model

● Work has just begun on this and right now a very rough draft.

● Need of serializer tool to persistify the complex C++ object. Maybe not possible in
the GPUs.

● Investigation of the data structures that do not need secondary tools to persistify.

HEP-CCE
Summary

• Darshan has been a useful tool to guide us about HEP workflows IO
patterns and usage on HPC. This work has resulted in enhancements to
Darshan as well.

• Root serialization scaling studies have uncovered opportunities to
improvements in ROOT and therefore impacting experiment frameworks
using them.

• The test framework provides us with a valuable tool that can be used to
do performance comparison among different IO strategies and formats in
an experiment-independent code

• HDF5 with parallel IO is currently being explored and evaluated against
other IO formats

• Serial (within framework) and parallel (standalone) versions exist and
being evaluated

HEP-CCE
What is next for HDF5?

• Event aggregation
• Coalesce I/O requests for the same HDF5 dataset.
• Reduce the number of H5D calls.

• HDF5 grouping
• Groups contains all data product
• One event per group
• Enable better parallel I/O performance

• Multi-threaded HDF5
• There is a feature branch available with simple read/write

patterns, which we have in our use case, that we should look
into

• Explore direct storage access from GPUs

HEP-CCE
What is next for evaluation and testing?

• Do read performance tests
• Do write performance tests on an HPC node (Cori/Theta)

• Test at higher thread count
• Test HDF ability to write to one file from multiple processes

(Parallel IO capabilities)
• Large scale testing on HPC site
• Use many nodes concurrently running the test framework
• Do fast write/read tests using different formats

HEP-CCEWhat is HEP-CCE?
Three-year (2020-2023) pilot project

four US labs, six experiments, ~12 FTE, ~30 collaborators
1. Portable parallelization strategies

● exploit massive concurrency
● portability requirements

2. Fine-grained I/O and related storage issues
● new data models (zero-copying, SOA,...)
● event batching (XPU offloading)

3. Optimizing event generators
4. Running complex workflows on HPCs

● main use case: cosmology surveys

Open collaboration
https://indico.fnal.gov/category/1053/

https://www.anl.gov/hep-cce

https://indico.fnal.gov/category/1053/
https://www.anl.gov/hep-cce

