

Contribution ID: 39

Type: Submitted

Investigating the key rp-process reaction 61 Ga(p, γ) 62 Ge reaction via 61 Zn(d,p) 62 Zn transfer

Tuesday 14 December 2021 10:15 (12 minutes)

Type-I X-ray bursts are interpreted as thermonuclear explosions in the atmospheres of accreting neutron stars in close binary systems \cite{Schatz1}.

During these bursts, sufficiently high temperatures are achieved ($T_{peak} \sim 0.8-1.5$ GK) such that "breakout" from the hot CNO cycle occurs. This results in a whole new set of thermonuclear reactions known as the *rp*-process \cite{Schatz2}. This process involves a series of rapid proton captures resulting in the synthesis of very proton-rich nuclei up to the Sn–Te mass region.

Recent studies $(cite{Cybert, Meise})$ have highlighted the ${}^{61}Ga(p,\gamma){}^{62}Ge$ reaction as significant in its effect on nucleosynthesis along the *rp*-process path within X-ray bursts, as well as on resultant light curves and final isotopic compositions.

Despite this, the stellar reaction rate at X-ray burst temperature range is effectively unknown.

Like many reactions that occur in explosive astrophysical environments, the 61 Ga(p,γ) reaction is expected to be dominated by resonant capture to excited states above the proton-emission threshold in 62 Ge.

Studying systems far from stability such as this can prove extremely challenging and, in fact, in many cases impossible at this present time.

Recent investigations of mirror nuclei \cite{Margerin, Pain, Lotay} however have been shown to offer a unique solution to this issue.

The properties of excited states in pairs of mirror nuclei are almost identical, such that spectroscopic information of the neutron-rich system can be used to accurately determine the rates of astrophysical processes within the proton-rich system that cannot be accessed experimentally \cite{Margerin, Pain, Lotay}.

The ISOL Solenoidal Spectrometer at the ISOLDE facility has been used recently to study (d,p) transfer reactions in inverse kinematics \cite{Tang, MacGregor}. In this experiment, we aim to use similar techniques to perform the 61 Zn(d,p) 62 Zn transfer reaction for the first time.

Analysis of excited states in the astrophysically important mirror nucleus 62 Zn will then place the first ever constraints on the astrophysical 61 Ga(p,γ) 62 Ge reaction rate in X-ray burst environments, thereby allowing a detailed comparison between the latest theoretical models and astronomical observations.

Authors: Mr O'SHEA, Connor Thomas (University of Surrey (GB)); Dr DOHERTY, Daniel (University of Surrey (GB)); Dr LOTAY, Gavin (University of Surrey (GB))

Co-authors: Mr BENNETT, Samuel (University of Manchester); Mr BROWNE, Frank (CERN); Mr BUTLER, Peter (University of Liverpool); Ms CANETE, Laetitia (University of Surrey); Mr CATFORD, Wilton (University of Surrey); CLARKE, Daniel (University of Manchester); Ms DOLAN, Annie (University of Liverpool); Mr FREE-MAN, Sean (Manchester/CERN); Mr GAFFNEY, Liam (University of Liverpool); GARRETT, Katie (University of Manchester); Mr HOFFMAN, Calem (Argonne National Laboratory); Ms JAYATISSA, Heshani (Argonne National Laboratory); KAY, Benjamin (Argonne National Laboratory); Mr LABICHE, Marc (University of Daresbury); Mr MATTA, Adrien (University of Caen); NOWACKI, Frédéric (University of Strasbourg); Mr OLAIZOLA, Bruno (CERN); ROBERT, Page (University of Liverpool); Mr PAXMAN, Charlie (University of Surrey); Mr PODOLYAK, Zsolt (University of Surrey); Mr RAABE, Riccardo (KU Leuven,

Institut voor Kern- en Stralinsfysica); RECCHIA, Francesco (Universit'a di Padova); Mr REED, Ben (University of Surrey); Mr REGAN, Paddy (University of Surrey); SATRAZANI, Magda (University of Liverpool); Mr SHARP, David (University of Manchester)

Presenter: Mr O'SHEA, Connor Thomas (University of Surrey (GB))

Session Classification: Nuclear models and astrophysics