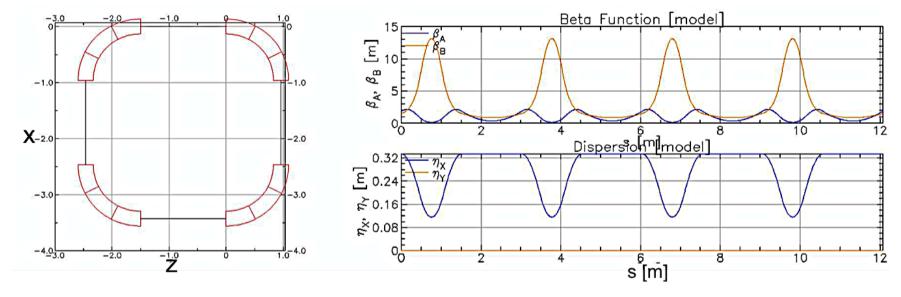

# **Recent developments in the design of the HIE-ISOLDE Superconducting Recoil Separator (ISRS)**


<u>I. Martel<sup>1</sup></u>, G. Kirby<sup>2</sup>, V. Rodin<sup>3,4</sup>, O. Kirby<sup>2</sup>, A. Foussat<sup>2</sup>, J. Resta-López<sup>5</sup> for the ISRS Collaboration <sup>1</sup>Univ. Huelva, Spain. <sup>2</sup>CERN, Geneva, Switzerland. <sup>3</sup>Univ. Liverpool, United Kingdom. <sup>4</sup>Cockcroft Institute, United Kingdom. <sup>5</sup>Univ. Valencia, Spain.

#### The HIE-ISOLDE facility at CERN



#### **Beam dynamics**

The ring will operate as an isochronous non-scaling fixed-field alternatinggradient (FFAG) system based on Canted-Cosine-Theta (CCT) magnets Preliminary FFAG optics calculations predict large solid angles > 100 msr and momentum acceptances  $\Delta p/p > 20\%$  from <sup>11</sup>Li to <sup>234</sup>Ra @ 10 MeV/u, mass resolution better than 1/2000. Storage efficiency ~ 100%.



Footprint of the optics, betatron functions and first order dispersion for a FDF optics configuration (C. Bonotiu et al., NIM A 969 (2020)164048).

### Magnet specifications

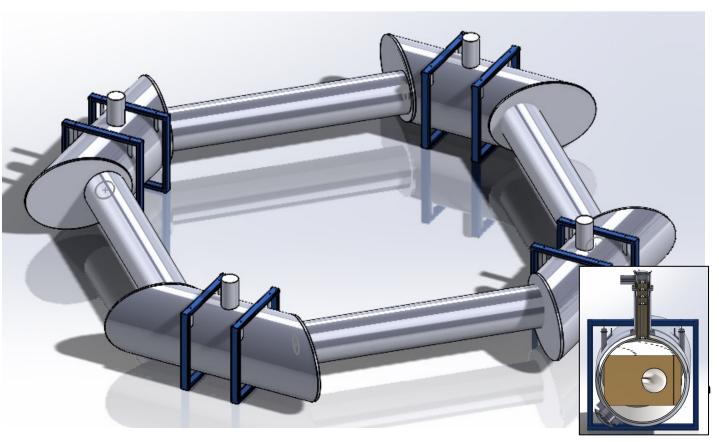
| Magnet aperture                                  | 200 mm       |  |
|--------------------------------------------------|--------------|--|
| Curvature radius                                 | 1000 mm      |  |
| Magnetic Bend                                    | 90 deg       |  |
| Total Matix Inductance                           | 3322.4 mH    |  |
| Total Energy                                     | 228.065 kJ   |  |
| Superconductor                                   |              |  |
| Bare Strand Diameter                             | 0.825 mm     |  |
| Insulated Polyimed Strand Diameter               | 1 mm         |  |
| Superconducting material                         | Nb-Ti        |  |
| Cu:Su ratio                                      | 1.9 to 1.2:1 |  |
| RRR                                              | > 100 to 250 |  |
| Total wire length: Main CF + Trims Q's           | 11.64 km     |  |
| Main Magnet Combined function coil               |              |  |
| Dipole field aperture                            | 2.2 Tesla    |  |
| Qaudrupole field                                 | 15 T/m       |  |
| Noninal Current                                  | 365 A        |  |
| Max field with all coils powered (max in magnet) | 4.127 T      |  |
| Max field with just Main coil powered            | 4.006 T      |  |
| Short Sample at Nominal currents in all coils    | 73.3 %       |  |
| Number of wires in channel                       | 20           |  |
|                                                  |              |  |

| Main Magnet Combined function coil (Cont.) |             |           |      |
|--------------------------------------------|-------------|-----------|------|
| Number of layers/formers                   |             | 2         |      |
| Channel turns in formers                   |             | 108       |      |
| Coil Conductor lengh                       |             | 10.25     | km   |
| Main Coil Inductance                       |             | 3307.112  | mH   |
| Total number of joints in coil             |             | 19        |      |
| Trim Quadrupole Coils                      | Center Coil | End C     | oils |
| Max Quadrupole Gradient                    | 2.29        | ± 2.27    | T/m  |
| Noninal Current                            | (±) -300    | (±) + 300 | A    |
| Max field with all coils powered           | 4.086       | 3.738     | Т    |
| Short sample at Nominal Currents 4.5K      | 73          | 71.4      | %    |
| Number of wires in channel                 | 2           | 2         |      |
| Number of layers                           | 2           | 2         |      |
| Channel turns in formers                   | 81          | 69        |      |
| Magnetic Bend                              | 33.1        | 28.2      | Deg  |
| Coil Conductor lengh                       | 514.7       | 775.1     | m    |
| Coil Inductance                            | 9.06        | 7.68      | mH   |
| Total number of joints in coil             | 5           | 5         |      |

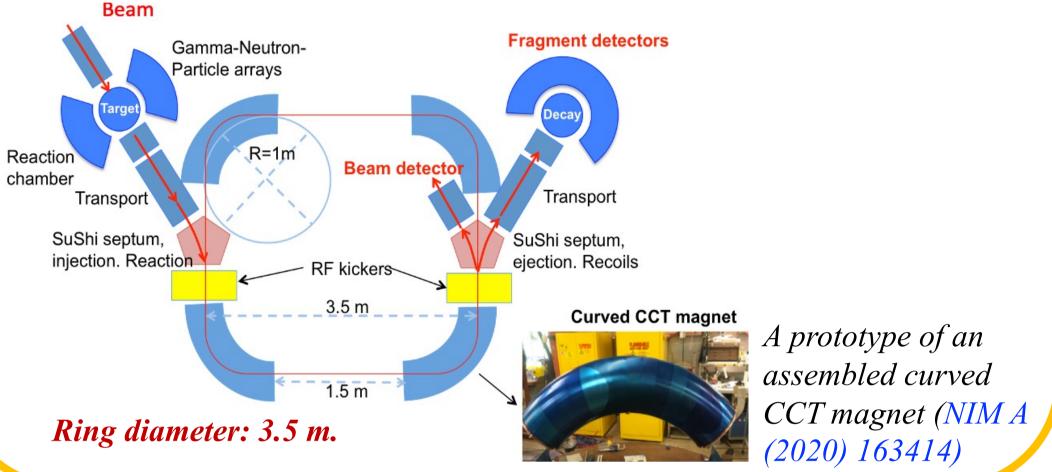
### The HIE-ISOLDE Superconducting Recoil Separator (ISRS)

Measurement of reaction fragments for a range of radioactive beams <sup>6</sup>He – <sup>234</sup>Ra up to about 10 MeV/u. **R&D program** to study the design of a compact recoil separator using **innovative** concepts and technologies:

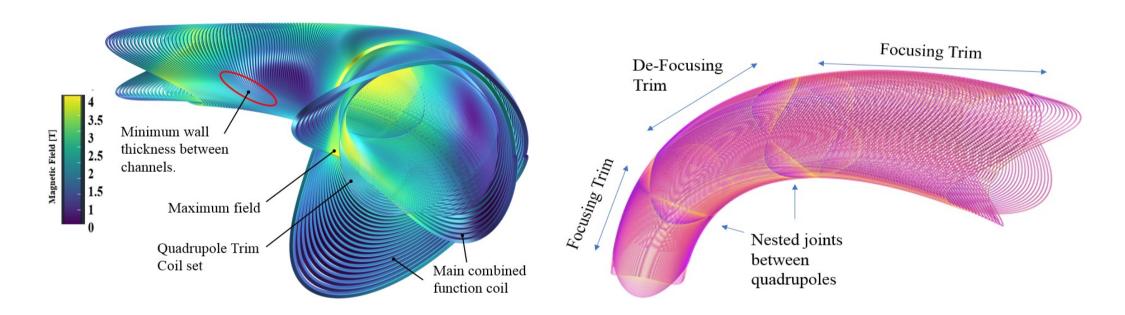
(1) Mini-Storage ring (2) CCT-Multifunction Superconducting solenoids (3) FFAG (4) Iron free magnets (5) cryocooling


- Unprecedent mass resolution, angular and momentum acceptance.
- Technological breakthrough for the construction of future spectrometers,
- R&D phase endorsed by the ISOLDE & NTOF Committee (CERN) -INTC66. (I. Martel et al., LoI INTC-I-228, 2020)

#### **Technological challenges involved**


- 1. Beam dynamics: FFAG optimisation for ring configuration and operation.
- 2. Multifunction SC magnets, with **straight** and **curved configurations**, iron free option.
- 3. SC magnet test bench for the above configurations.
- 4. In-ring beam diagnostic systems.
- 5. Injection/extraction system.
- 6. Multi-harmonic buncher system (MHB).
- 7. Re-buncher system (RBS).
- 8. Focal plane detectors and particle trajectory reconstruction.
- 9. Detailed study of the charge breeder operation (EBIS, ISOLDE case).
- 10. Cryocoolers vs LHe cooling.

#### **Mechanical integration**


Mechanical study of curved magnet cryostat and integration into a ring: LHe vessel, gas cooled radiation shields. Separate beam and cryostat vacuum.







### Superconducting Curved Canted-Cosine-Theta (CCT)



The multifunction CCT magnets have two alternating-gradient quadrupoles nested inside an outer dipole. Orbit stability is achieved for dipole maximum fields of 2.2 T and quadrupole gradients of 14 T/m for heavy ions @ 10 MeV/u. (*G. Kirby et al., MT25, 2021*)

The R&D program for the design study of the Isolde Superconducting Recoil Separator is rapidly developing. Major advances include the beam dynamics and the design study of a curved multifunction coil with nested trim coils according to the specifications. First studies of cryostating and mechanical integration concepts into a compact storage ring have been carried out.

## Acknowledgements

#### **Conceptual layout of the separator**

The ring consists of curved CCT magnets, straight sections, injection/extraction systems and beam diagnostics.

#### **Summary and conclusions**

Work partially supported by the Grant PGC2018-095640-B-I00 (2018-21) of the Spanish Ministry of Science and Innovation.