

Contribution ID: 45 Type: Submitted

Coulomb excitation of 66Ge

Tuesday 14 December 2021 11:00 (12 minutes)

The Coulomb excitation of 66 Ge has been performed for the first time using "safe" bombarding energies at the HIE-ISOLDE facility at CERN. Motivation to study 66 Ge arises from the anomalous rotational behaviour of the high-lying first 2_1^+ state observed in even-even isotopes in the $A\sim70$ region [1]. Low-lying 0^+ excited states have been determined for even-even neutron-deficient Se[2] and Kr[3] isotopes, which are signatures of shape coexistence [4]. In particular, the Germanium and Selenium isotopes have received a considerable amount of interest because they lie between the doubly magic 58 Ni and the strongly deformed neutron-deficient 76 Sr isotopes. This region has shown a complicated interplay between non-collective and collective degrees of freedom due to large sub-shell gaps at both prolate and oblate deformation for proton and neutron numbers N, Z=34,36 [4,5]. In addition, macroscopic-microscopic models suggest gamma-softness for 64 Ge through oblate-prolate shape coexistence in 68 Se and 72 Kr to some of the most deformed nuclei at 76 Sr and 80 Zr.

A particle- γ coincidence experiment using the MINIBALL array and double-sided silicon detectors has allowed the determination of transitional and diagonal matrix elements in 66 Ge, yielding new measurements of the reduced transition probability connecting the ground and the 2_1^+ states, or $B(E2;0_1^+\to 2_1^+)$ value, and the spectroscopic quadrupole moment of the 2_1^+ state, $Q_S(2_1^+)$. A relatively large B(E2)=29.4(30) W.u. has been extracted using beam-gated data at forward angles – less sensitive to second-order effects – as compared with the adopted value of 16.9(7) W.u., but in closer agreement with modern large-scale shell-model calculations using a variety of effective interactions and beyond-mean field calculations. A spectroscopic quadrupole moment of $Q_S(2_1^+)=+0.41(12)$ eb has been determined using the reorientation effect from the target-gated data at projectile backward angles – more sensitive to the reorientation effect. Such an oblate shape is in agreement with the corresponding collective wavefunction calculated in the present work using beyond mean-field calculations and its magnitude agrees with the rotational model, assuming B(E2)=29.4(30) W.u.

- [1] P.J. Davies et al., Phys. Rev. C 75 011302(R) (2007)
- [2] J.H. Mamilton et al., Phys. Rev. Lett. 32, 239 (1974)
- [3] E. Clement et al., Phys. Rev. C 75, 054313 (2007)
- [4] J.L. Wood, K. Heyde, W. Nazarewics, M. Huyse and P. Vn Duppen, Phys Rep. 215, 101 (1992)
- [5] M. Hasegawa et al., Phase transition in exotic nuclei along the N=Z line, Phys. Lett. B 656, 51 (2007).
- [6] K. Nomura *et al.*, Structural evolution in germanium and selenium nuclei within the mapped interacting boson model based on the Gogny energy density functional, Phys. Rev. C **95**, 064310 (2017).

Authors: Dr ABRAHAMS, Kenzo; Prof. ORCE GONZALEZ, Jose Nicolas (University of the Western Cape (ZA))

Co-authors: GAFFNEY, Liam (University of Liverpool (GB)); JENKINS, David (University of York); AKAKPO, Elijah (The University of the Western Cape); BROWN, Adam Sebastian (University of York (GB)); DOHERTY, Daniel (University of Surrey (GB)); Dr GARRETT, Paul; MEHL, Craig Vernon (University of the Western Cape (ZA)); NGWETSHENI, Cebo (University of the Western Cape (ZA)); Prof. NTSHANGASE, Sifiso (University of Zululand); Dr RAJU, Kumar; SPAGNOLETTI, Pietro Nicola (UWS - Univ. of West of Scotland (GB)); WADSWORTH,

Robert (University of York); ZIELINSKA, Magdalena (CEA Saclay); Mr MONTES, Elias (The University of the

Western Cape); Dr RAINOSKI, Georgi (Sofia)

Presenter: Dr ABRAHAMS, Kenzo

Session Classification: Nuclear models and astrophysics