

Single-particle state evolution along the N = 127 isotone chain using the *d*(212Rn,*p*)213Rn reaction (IS689)

Daniel Clarke The University of Manchester ISOLDE Physics Workshop and USERS meeting 15th December

⁵²Ca

• N = 30

■ *N* = 32

♦ N = 34

Single particle evolution – light nuclei The University of Manchester

- Far from stability, shell closures have been shown to evolve for systems with imbalances of protons and neutrons
- Studies of light neutron-rich system have led to the discovery of new shell closures

 $E(3_{1}^{-})$

 $E(2^{+}_{1})$

3

~_______

D. Steppenbeck et al, Nature 502 207 (2013)

 \odot

₅≻⊧

2

15/12/2021

T.Otsuka and D. Abe Prog. In Particle and Nuclear Physics 59 425 (2007)

Single particle evolution – heavy nuclei The University of Manchester

neutron

- In heavier stable nuclei trends have also been observed, particularly in high-j states as other high-j states fill with nucleons
- Studying chains of isotopes/isotones have pointed to the inclusion of a tensor interaction to explain systematics

D.K. Sharp et al, Phys.Rev.C 87 014312 (2013)

Otsuka et al. Phys. Rev. Lett. 95, 232502 (2005)

Single particle evolution along N=127

- Radioactive beams at HIE-ISOLDE allow chains further from stability to be studied
- Studies can be extended to N=126 isotones
- Currently data on states up to Z=84 (211Po) are known with data sensitive to single-particle behaviour
- Above this only energies are known with spin assignments based on systematics
- The location of nuclei with one neutron outside the N=126 closed shell makes them ideal testing grounds for modern shell-model calculations

D. K. Sharp et al. INTC-P-594 (2020)

Single particle evolution along N=127

- Along this isotone chain it is expected that the nodeless π h9/2 orbital is filling
- Changes in single-particle centroids for the single neutron outside N=126 is then attributed to protons in the πh9/2 orbital
- Aim is to probe the strength of $s_{1/2}$, $d_{5/2}$, $g_{9/2}$, $i_{11/2}$ and $j_{15/2}$ orbitals
- Changes due to the tensor interaction should be pronounced in $i_{11/2}$ and $j_{15/2}$ orbitals

ISOLDE Solenoidal Spectrometer (ISS)

https://isolde-solenoidal-spectrometer.web.cern.ch/content/stfc-news-piece-iss-experiments

5/12/2021

212 Rn(d,p) 213 Rn reaction has been performed.

The Unive

- 7.63 MeV/u
- ~10⁶ pps
- Highest beam energy available was used to maximise cross-section of high- ℓ states
- Angular distributions are more forward peaked at higher beam energies
- Inverse kinematics protons at forward θ_{cm} are emitted at backward θ_{lab}

https://hie-isolde-project.web.cern.ch/hie-isolde-project/

MANCHESTER

Experimental Details

- Beam: 212 Rn at 7.63 MeV/u
 - No evidence of any impurities
- CD2 targets: ~ 125 μg/cm²
- Array: -50 cm from target
 - $\theta_{cm} = 10^{\circ} \text{ to } 40^{\circ}$
- Field: 2.0 T
- Si (*d*,*d*) monitor: +15cm from target, $\theta_{cm} = 15^{\circ}$

https://isolde-solenoidal-spectrometer.web.cern.ch/setup/si-detector-array

Analysis Method

$$E_{\rm cm} = E_{\rm lab} + \frac{m}{2} V_{\rm cm}^2 - \frac{m V_{\rm cm} z}{T_{\rm cyc}}$$

15/12/2021

Energy vs. z distance gated on EBIS and off beam subtracted

Preliminary Results – excitation spectrum^{The University of Manchester}

Excitation energy vs. centre of mass angle gated by EBIS and off beam subtracted

DWBA calculations

- Absolute cross sections will be compared to DWBA calculations from PTOLEMY
- Allows ℓ assignments of states and spectroscopic factors to be extracted
- Single-particle centroids can be calculated and compared with theoretical calculation €
- and compared with theoretical calculation
 Different optical models will be used to compare absolute spectroscopic factors

Conclusions and Future Work

- *d*(212Rn*,p*)213Rn
 - *l* assignments
 - Extract SF

Tensor interaction

Otsuka et al. Phys. Rev. Lett. 95, 232502 (2005)