

Radiotracer studies of diffusion in multi-principal element alloys S.V. Divinski

Number of publications devoted to HEAs

127 publications: diffusion (title) + HEA (topic) 697 publications: diffusion + HEA (topic) Why multi-principal element (high-entropy) alloys?

High-Entropy Alloys

Main principles of HEAs:

• high configurational entropy (five and more components in equiatomic proportion)

sluggish diffusion

- severe lattice distortion
- cocktail effect

Yeh (2004)

Mechanical properties of HEAs

Content of the talk

Tracer diffusion in homogeneous alloys:

• FCC CoCrFeNi & CoCrFeMnNi

• <u>FCC & BCC& B2</u> Al_xCoCrFeNi

<u>σ-phase</u> CoCrFeMnNi

HCP AIScHfTiZr

BCC HfTiZrTaNb

• <u>FCC</u> (CoCrFeMn)_{100-x}Ni_x

Vaidya et al JALCOM (2016) Vaidya et al, Acta Mater (2018) Gaertner et al, Scr Mater (2020)

(poly-, single- and bi- crystals)

Zhang et al, Acta Mater (2020)

Kottke et al, Acta Mater (2020)

Vaidya et al, Acta Mater (2020) Sen et al (2021) in preparation

J.Zhang et al (2021) submitted

Tracer diffusion under concentration gradient

Augmented tracer-interdiffusion couple

Gaertner et al Acta Mater (2019)

FCC CoCrFeMnNi system

Penetration profiles measured for Cu diffusion in single crystalline CoCrFeNi using on-line Diffusion Chamber at ISOLDE

Co, Cr, Fe, Mn, Ni and Cu tracer diffusion in HEA single crystals

(filled symbols correspond to CoCrFeNi and open symbols correspond to CoCrFeMnNi)

Diffusion in HEAs and other FCC systems (homologous T scale)

Ni: M.B. Bronfin, G.S. Bulatov and I.A. Drugova, Fiz. Met. Metalloved. 40 (1975) 363-366.
B. Million, J. Růžičková, J. Velíšek, and J. Vřešťál, Mater. Sci. Eng. 50 (1981) 43-52.
S.J. Rothman, L.J. Nowicki and G.E. Murch, J Phys F Met Phys. 10 (1980) 383.
K.Y. Tsai, M.H. Tsai, J.W. Yeh Acta Materialia (2013) 61, 4887–4897
Vaidya et al JALCOM (2016)

precipitation in CrMnFeCoNi high-entropy alloys, G. Laplanche et al, Acta Mater (2019)

Gaertner et al, Scr Mater (2020)

A = Co + Fe + Mn + Ni 10

Diffusion in sigma phase of the CoCrFeMnNi system (Cr-rich)

On a homologous temperature scale, diffusion of Fe and Ni in (Cr-rich) sigma-CoCrFeMnNi phase is faster as in equiatomic FCC CoCrFeMnNi

Appearance of a HEA effect

The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system G. Bracq, M. Laurent-Brocq, L. Perriere, R. Pires, J.-M. Joubert, I. Guillot, Acta Materialia 128 (2017) 327-336

Ni diffusion in Ni_x(CoCrFeMn)_{1-x} alloys

Kottke et al Acta Mater (2020)

FCC / BCC / B2 phases in Al_xCoCrFeNi

Ni diffusion in $AI_xCo_1Cr_1Fe_1Ni_1$ (x = 0.5, 1, 2)

Element diffusion at $T = 0.8 T_m$

17

hcp AIScHfTiZr

Ultra-fast diffusion in hcp Ti aluminides

diffusion in $\alpha\text{-Ti}$

Herzig & Divinski (2005)

Ultra-fast diffusion in hcp-HEAs

Ultra-fast diffusion of Co in HCP HEAs does exist! \Rightarrow A sensitive and unique probe of local order!

Vaidya, Sen, Zhang, et al, Acta Mater (2020)

Tracer vs chemical (inter-)diffusion ⇒ a pathway to high-throughput determination of the concentrationdependent tracer diffusion coefficients

Composition dependent atomic mobilities: combination of tracer and chemical diffusion measurements

Interdiffusion and tracer diffusion

Conclusions

- Tracer diffusion in HEAs is "normal", not "sluggish"
- diffusion "retardation" in fcc and "acceleration" in bcc & hcp

(at $T/T_m = \text{const}$)

 systematic variation of Ni amount in Ni_x(CoCrFeMn)_{100-x} affects the diffusion rates ->

no abrupt transition from "solid solution"-like to "HEA-like" behavior

- ultra-fast diffusers in hcp HEAs
- concentration-dependent tracer diffusivities
- Tracer diffusion: precision differentiation between bulk and GB diffusion

Unresolved/open problems

- Diffusion in different crystalline lattices
- Solute diffusion
- Relation of diffusion and nucleation/short range ordering/decomposition
- GB diffusion
- Mobility / thermodynamic databases

Deutsche Forschungsgemeinschaft