

IS668 EC-SLI: First results on lattice location of implanted ²⁷Mg, ⁴⁵Ca and ⁸⁹Sr in diamond

U. Wahl¹, J.G. Correia¹, A. Costa², G. Magchiels², J. Moens², M. Tunhuma², R. Villarreal², K. Johnston³, A. Lamelas⁴, V. Amaral⁴, M.R. da Silva⁴, A. Vantomme², L.M.C. Pereira²

¹ C2TN, Instituto Superior Técnico, Lisboa, Portugal

² KU Leuven, Quantum Solid-State Physics, Belgium

³ CERN-EP, 1211 Geneva 23, Switzerland

⁴ CICECO - Instituto de Materiais de Aveiro, Universidade de Aveiro, Portugal

- Introduction: quantum colour centers in diamond
- Emission channeling method
- EC results: ²⁷Mg, ⁴⁵Ca, ⁸⁹Sr
- Conclusions

Quantum centers suitable for studies with radioactive ion beams

KU LEUVEN

- <u>Our research interest:</u> impurities in solids which exhibit quantum properties useful for future applications: "<u>quantum centers</u>"
- <u>General characteristics:</u> Dilute impurity atoms embedded in a solid
- <u>Useful quantum properties</u> are related to spin interactions, (stimulated) photon emission, coherence, entanglement, polarization of photons...
- Quantum properties emerge from the electronic/nuclear interaction of the impurity with the crystal host
- <u>Microscopic structure</u> of centers determines their quantum properties

Centro de Ciências e Tecnologias Nucleares www.c2tn.tecnico.ulisboa.pt

ÉCNICO

ISBOA

Split-vacancy centers in diamond

- Colour centers in diamond are intensively investigated for their applications in processing and communication of quantum information and metrology.
- Diamond has a very tight lattice, so it is common that impurity atoms pair with a vacancy V.
- Two possible configurations for impurity-vacancy centers in diamond:

D_{3d} "split-vacancy",
assumed for group IV-vacancy:
SiV [1], GeV [2], SnV [3,4], PbV
[5], but also for MgV [6]

- Superior optical properties of the centers with split-*vacancy* structure are to a large extent a consequence of their D_{3d} inversion (mirror) symmetry.
- Many colour centers in diamond are commonly produced by ion implantation.
- How to optimize implantation conditions in order to achieve unperturbed split-*vacancy* configurations?
- Emission channeling lattice location experiments are uniquely suited to study this problem.

[1] J.P. Goss *et al.*, Phys. Rev. Lett. 77 (1996) 3041
[2] T. Iwasaki *et al.*, Sci. Rep. 5 (2015) 12882
[3] S.D. Tchernij, ... J. Forneris, *et al.*, ACS Photonics 4 (2017) 2580

[4] T. Iwasaki, ... P. Syushev, *et al.*, Phys. Rev. Lett. 119 (2017) 253601
[5] S.D. Tchernij, ... J. Forneris, *et al.*, ACS Photonics 5 (2018) 4864
[6] A. Pershin et al., npj Quantum Information 7 (2021) 99

Predicted structures of Mg defects in diamond

KU LEUVEN

MgV

- Theoretically predicted structures of Mgrelated complexes in diamond [6]:
- Interstitial Mg_i: T_d symmetry
- Substitutional Mg_s: *T*_d symmetry
- MgV: split-*vacancy* configuration with Mg on BC sites,

D_{3d} symmetry <111>

MgV₂:
 C₁ symmetry <100>

Formation energies favour MgV, Mg_s, possibly MgV₂, rule out Mg_i

[6] A. Pershin et al., "Highly tunable magneto-optical response from MgV color centers in diamond", npj Quantum Information 7 (2021) 99

ISOLDE Workshop 2021

- Radioactive ²⁷Mg ($t_{1/2}$ =9.5 min), ⁴⁵Ca ($t_{1/2}$ =164 d), ⁸⁹Sr ($t_{1/2}$ =50.5 d) probe atoms are produced at ISOLDE.
- 30 keV ion implanted (1-5×10¹² cm⁻²) into diamond, measured as function of implantation or annealing temperature.
- Position- and energy sensitive detector [7] is used to detect emission channeling [8] effects of β⁻ decay particles in the vicinity of major crystallographic directions.

[7] U. Wahl *et al.*, Nucl. Instr. Meth. A 524 (2004) 245
[8] H. Hofsäss, G. Lindner, Phys. Rep. 201 (1991) 121

Angular dependent β^- emission patterns characterize the lattice site distribution of the radioactive probe atoms.

- β⁻ angular emission yield patterns are calculated for ~250 lattice sites in the diamond unit cell using the "many-beam" [8,9] approach. Example: ¹²¹Sn.
- Anisotropy and contours of patterns change with position of impurity in the lattice, e.g. the <100> pattern when moving from S to BC sites:

[8] H. Hofsäss, G. Lindner, Phys. Rep. 201 (1991) 121
[9] U. Wahl *et al.*, Hyperf. Interactions (2000) 129 349

KU LEUVEN

Emission channeling ²⁷Mg in diamond

- Preliminary results July 2021 beam time
- Ongoing analysis
- Only small differences between RT and 800°C
- Patterns were fitted assuming ideal S and BC sites (u₁=0.034 Å)
- *T*_i=RT:
 - 13% S
 - 34% BC
- *T*_i=800°C: 17% S
 - 31% BC
- Mg_{s} and $Mg_{BC}V$ complex
- High fraction (>50%) of "random" sites
- Other lattice sites must be present
- Large fraction in MgV_2 or MgV_3 complexes?

Emission channeling ⁴⁵Ca in diamond

<100> and <111> patterns not found because their anisotropy is too weak \Rightarrow absence of S-sites

⁴⁵Ca ($t_{1/2}$ = 164 d) long-lived isotope

• Preliminary results + ongoing analysis

- Changes in fine structure of patterns
- Assuming ideal S and BC sites (u₁=0.034 Å), patterns could NOT be well fitted
- Possible scenarios:
- RT as-implanted: 113% BC with u₁=0.35 Å
- *T*_A=900°C:
 35% BC with *u*₁=0.14 Å
 40% SP
- No substitutional Ca_s !
- Only $Ca_{BC}V$ and $Ca_{SP}V_2$ complexes?

Addressed in more detail in following talk of Afonso Lamelas

Emission channeling ⁸⁹Sr in diamond

- ⁸⁹Sr ($t_{1/2}$ = 50.5 d) long-lived isotope
- Preliminary results + ongoing analysis
- Anisotropy doubled after 900°C annealing
- Assuming ideal S and BC sites (u₁=0.034 Å), patterns could NOT be well fitted
- Possible scenarios:
- RT as-implanted:
 69% BC with u₁=0.39 Å
- $T_A = 900^{\circ}$ C: 42% S with $u_1 = 0.30$ Å 5% BC with $u_1 = 0.05$ Å
- As-implanted: mostly Sr_{BC}V but NO Sr_S
- For T_A =900°C converted largely to Sr_s with large u_1
- What is the nature of Sr_s with large u_1 ?

- ²⁷Mg: ~30% Mg_{BC}V "split-vacancy" configuration + ~15% Mg_S + indications that Mg_{SP}V₂ complexes are also likely to be found
- ⁴⁵Ca: negligible occupation of S sites, probably only $Ca_{BC}V$ and $Ca_{SP}V_2$
- ⁸⁹Sr: at RT Sr_{BC}V but for T_A =900°C Sr_S, both with large u_1
- "Split-*vacancy*" configurations found but no obvious correlation with atomic size of impurities
- Complicated defect situation (more complex than e.g. for ¹²¹Sn)
- DFT calculations may be helpful to identify the possible configurations