Julia for QCD spectroscopy

Misha Mikhasenko

July 2021

Julia in my projects

Interface between theory and experiment needs non-standard functions, flexibility

$$\sim$$
 2017: Mathematica / C++ \Rightarrow Julia

- [JPAC, PRD 98 (2018)]: Studies of the $a_1(1260)$
 - ► Coding complex parametrization
 - Binned fit with NLopt.
 - Analytic continuation
- [COMPASS, PRL 127 (2021) 8, 082501]: Triangle Singularity as the Origin of the $a_1(1420)$
 - ► Coding complex parametrization (cross check for C++)
 - Final plotting
- [LHCb, PRD Lett., 2107.03419]: Ω_c^{**0} in Ω_b^+ decays
 - Event processing: cut-bases selection
 - Event-based log-likelihood fitting
- ullet [LHCb, submitted to Nature Physics]: Study of the doubly charmed tetraquark T_{cc}^+
 - ► Coding complex parametrization (cross check for C++)
 - Analytic studies: integrals, complex algebra

Workflow in LHCb analysis

Workflow:

- Course selection on event topology: python/DSL to configure C++ algorithms of Gaudi
- Pre-Selection (done via distributed computation grid): python/DSL to configure C++
- Sine event selection − NN/BDT: python/C++
- Extraction of physics: python/C++

The steps 3 and 4 can be done by Julia.

The reason why it is not done:

- Code inheritance: many standard steps (BDTs) across many analysis
- Number of non-C++ precedents is very low

PDF builder and parameter handler in Julia

Replace RooFit

Construction complex parametric PDFs:

- Non-standard densities (complex interferences $|A + B|^2$)
- Non-linear dependence on parameters
- Parameter constraints
- Unbinned (extended) maximum likelihood fitting

[https://github.com/mmikhasenko/AlgebraPDF.jl]

Minimizers

Replace Minuit

Optimizers in Julia:

- Optim.jl: implement BFGS
 - Suggests a common interface of minimization: NLSolversBase
- NLopt.jl: calls BFGS
 - ► C++ wrapper, works
- iminuit via PyCall.jl: calls MIGRAD, pre-version of BFGS
 - ▶ Incredibly stable linear search, works where other (above) fail
 - ightharpoonup iminuit 1.54
 ightharpoonup 2.7.0: versioning via Conda.jl is not straightforward

Plotting in Julia

Replace ROOT

- GR via Plots.jl
 - Super fast, publication quality
 - Convenient recipe system
 - Relatively easy to implement hacks
 - Might be unstable, misses hep-related recipes
- PGFplotsX.jl: LaTeX plots
- PlotlyJS.jl: interactive

6/7

[Interactive plot in cloud by Plotly Chart Studio.]

Summary

Julia is ready to be used in physics HEP analysis

What will make experience even better:

- ROOT format reading without python: UpROOT
- Minimizers: finding stopping criteria, tuning linear search
- ..

More enthusiasts pioneering application of Julia!