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Language transitions

Physicists have to overcome an “activation energy” to switch
programming languages (as anyone would).

On a large scale, it has only happened a few times.
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Language transitions

The benefits have to be major and palpable: not a laundry list of little features.

Assembly → Fortran: readable math, hardware independence.

Fortran → C++: nested data structures.

“Data bank” libraries like ZEBRA and BOS addressed this problem
in pre-Fortran 90, but with rough edges that struct/class avoid.

C++ → Python: dynamic interactivity, introspection.

CINT, TClass, and now Cling address this problem in C++, but
with rough edges that a “ground up” dynamic language avoids.

C++/Python mix → Julia: built-in JIT? autodiff?

Cling-in-Python (PyROOT/cppyy) and Numba address JIT now;
JAX addresses autodiff. Are the rough edges bad enough to drive
physicists to a new language?
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Numba’s rough edges

Numba compiles statically typed Python, but the Python language
was not designed to be statically typed.

I Yes, Python has type annotations/mypy now, but the type granularity is
mostly for correctness-checking, not compilation.

item type numpy.typing.NDArray[numpy.float64]
item type, ndims Array{Float64, 3} (Julia)
item type, ndims, stride layout numba.types.Array(3, numba.float64, "C")
item type, ndims with lengths jax.ShapedArray((2, 3, 5), numpy.float64)

I Adding fields to existing objects or changing an object’s type are basic parts of
the Python language, but can never be allowed in statically compiled Numba.

I Any library that Numba doesn’t recognize can’t be used in its @nb.jit functions.
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Awkward Array, Vector, and soon Hist (PR #293) in Numba

@nb.jit # input Awkward Arrays
def delta_r_matching(array_reco, array_gen, builder):

for reco_event, gen_event in zip(array_reco, array_gen):
builder.begin_list() # output Awkward Array
for reco in reco_event: # nested list

best_i = -1
best_dr = -1.0
for i, gen in enumerate(gen_event): # nested list

dr = reco.deltaR(gen) # Vector!
if best_i < 0 or dr < best_dr:

best_i = i
best_dr = dr

if best_i < 0:
builder.append(None)

else:
builder.append(gen_event[best_i])

builder.end_list()
return builder
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Awkward Array/Numba interface is designed for quick excursions

1. No memory management: Awkward Arrays passed to @nb.jit functions as
borrowed references and cannot be created in the @nb.jit function.

2. Therefore, the ak.* functions can’t be called in any @nb.jit functions.
Only iteration (nested for loops) is allowed.

3. Runtime representation of every Awkward Array in @nb.jit is (roughly)
template <typename AwkwardNodeType>
struct AwkwardArrayView {

size_t pos; // nesting level (index in arrayptrs)
size_t start, stop; // view within this nesting level
void** arrayptrs; // pointers to actual array data
void** sharedptrs; // workaround for C++ memory management
PyObject* pylookup; // keep borrowed references in scope

}; // total: 48 bytes

with type-specific code generated for each AwkwardNodeType.
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Imagine doing the same thing in Julia, with the same scope

>>> from julia import Julia # PyJulia
>>> jl = Julia(compiled_modules=False)
>>> jl.eval("""
... function delta_r_matching(array_reco, array_gen, builder)
... for (reco_event, gen_event) in zip(array_reco, array_gen)
... builder.begin_list()
... for reco in reco_event
... (best_i, best_dr) = (nothing, nothing)
... for (i, gen) in enumerate(gen_event)
... dr = reco.deltaR(gen)
... if isnothing(best_i) || dr < best_dr
... (best_i, best_dr) = (i, dr)
... end
... end
... builder.append(isnothing(best_i) ? nothing : gen_event[best_i])
... end
... builder.end_list()
... end
... end
... """)
>>> # array_reco and array_gen are Awkward Arrays
>>> builder = jl.delta_r_matching(array_reco, array_gen, ak.ArrayBuilder())
>>> result = builder.snapshot()
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Fast iteration over Awkward Arrays in Julia

I would be a reasonably small-scope project (3 months?)

I would offer an alternative to Numba with the advantages of Julia

I would be an incentive for physicists to take quick excursions into Julia.
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Perspective of a busy physicist:

My iterative algorithm really can't be columnar.

I could try to write a Numba function for it, but I
keep running into huge type error messages for
code that works in uncompiled Python.

Or I could try writing a Julia function. The syntax
is a little different and needs to be in a separate
file or string, but the error messages make more
sense, and it always works if it's valid Julia code.

This Julia's not bad. I could do more of my analysis
in it. I should pester Jim to rewrite Awkward Array
in Julia...
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Conclusion/proposal

1. Teach PyJulia to recognize Awkward Arrays (ArrayBuilders?) as arguments.

2. Minimal runtime representation, e.g.
struct AwkwardArrayView{AwkwardNodeType}
pos::UInt64 # nesting level (index in arrayptrs)
start::UInt64 stop::UInt64 # view within this nesting level
arrayptrs::Ptr{Ptr{Cvoid}} # to be cast with 'unsafe_wrap'

end # total: 32 bytes

3. Generate AwkwardNodeType-dependent code only for iteration.

4. Let physicists choose between Numba (same as the surrounding language)
and Julia (more consistent, powerful) for non-columnar algorithms.

5. This may be a “gateway” to Julia: strongly motivated (speed), small
up-front commitment; encourages physicists to use it more if they like it.

Anyone interested?
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