= PRINCETON (g iris
UNIVERSITY hep

How an Awkward Array/Julia bridge can introduce HEP to Julia

Jim Pivarski

Princeton University — IRIS-HEP

September 27, 2021

1/11

Language transitions

Physicists have to overcome an “activation energy” to switch
programming languages (as anyone would).

2/11

Language transitions

Physicists have to overcome an “activation energy” to switch
programming languages (as anyone would).

On a large scale, it has only happened a few times.

Fortran

Assembly

1940 1950 1960 1970 1980 1990 2000 2010 2020

2/11

Language transitions Y

The benefits have to be major and palpable: not a laundry list of little features.

3/11

Language transitions Y

The benefits have to be major and palpable: not a laundry list of little features.

Assembly — Fortran: readable math, hardware independence.

3/11

Language transitions Y

The benefits have to be major and palpable: not a laundry list of little features.

Assembly — Fortran: readable math, hardware independence.

Fortran — C++: nested data structures.

“Data bank” libraries like ZEBRA and BOS addressed this problem
in pre-Fortran 90, but with rough edges that struct/class avoid.

3/11

Language transitions Y

The benefits have to be major and palpable: not a laundry list of little features.

Assembly — Fortran: readable math, hardware independence.

Fortran — C++: nested data structures.

“Data bank” libraries like ZEBRA and BOS addressed this problem
in pre-Fortran 90, but with rough edges that struct/class avoid.

C++4+ — Python: dynamic interactivity, introspection.

CINT, TClass, and now Cling address this problem in C4++, but
with rough edges that a “ground up” dynamic language avoids.

3/11

Language transitions Y

The benefits have to be major and palpable: not a laundry list of little features.

Assembly — Fortran: readable math, hardware independence.
Fortran — C++: nested data structures.

“Data bank” libraries like ZEBRA and BOS addressed this problem

in pre-Fortran 90, but with rough edges that struct/class avoid.
C++4+ — Python: dynamic interactivity, introspection.

CINT, TClass, and now Cling address this problem in C4++, but

with rough edges that a “ground up” dynamic language avoids.
C-++/Python mix — Julia: built-in JIT? autodiff?

Cling-in-Python (PyROOT /cppyy) and Numba address JIT now;
JAX addresses autodiff. Are the rough edges bad enough to drive
physicists to a new language?

3/11

Numba's rough edges

Numba compiles statically typed Python, but the Python language
was not designed to be statically typed.

4/11

Numba's rough edges

Numba compiles statically typed Python, but the Python language
was not designed to be statically typed.

» Yes, Python has type annotations/mypy now, but the type granularity is
mostly for correctness-checking, not compilation.

4/11

Numba's rough edges

Numba compiles statically typed Python, but the Python language
was not designed to be statically typed.

» Yes, Python has type annotations/mypy now, but the type granularity is
mostly for correctness-checking, not compilation.

item type

numpy .typing.NDArray [numpy.float64]

item type, ndims
item type, ndims, stride layout
item type, ndims with lengths

Array{Float64, 3} (Julia)
numba.types.Array (3, numba.float64, "C")
jax.ShapedArray ((2, 3, 5), numpy.float64)

4/11

Numba's rough edges

Numba compiles statically typed Python, but the Python language
was not designed to be statically typed.

» Yes, Python has type annotations/mypy now, but the type granularity is
mostly for correctness-checking, not compilation.

item type

numpy .typing.NDArray [numpy.float64]

item type, ndims
item type, ndims, stride layout
item type, ndims with lengths

Array{Float64, 3} (Julia)
numba.types.Array (3, numba.float64, "C")
jax.ShapedArray ((2, 3, 5), numpy.float64)

» Adding fields to existing objects or changing an object’s type are basic parts of
the Python language, but can never be allowed in statically compiled Numba.

4/11

Numba's rough edges

Numba compiles statically typed Python, but the Python language
was not designed to be statically typed.

» Yes, Python has type annotations/mypy now, but the type granularity is
mostly for correctness-checking, not compilation.

item type

numpy .typing.NDArray [numpy.float64]

item type, ndims
item type, ndims, stride layout
item type, ndims with lengths

Array{Float64, 3} (Julia)
numba.types.Array (3, numba.float64, "C")
jax.ShapedArray ((2, 3, 5), numpy.float64)

» Adding fields to existing objects or changing an object’s type are basic parts of
the Python language, but can never be allowed in statically compiled Numba.

» Any library that Numba doesn’t recognize can’t be used in its @nb. jit functions.

4/11

Numba's rough edges

Supported Python features

Apart from the Language part below, which applies to both object mode and
nopython mode, this page only lists the features supported in nopython mode.

Numba behavior differs from Python semantics in some situations. We
strongly advise reviewing Deviations from Python Semantics to become
familiar with these differences.

Language
Constructs

Numba strives to support as much of the Python language as possible, but
some language features are not available inside Numba-compiled functions.
Below is a quick reference for the support level of Python constructs.

Supported constructs:

+ conditional branch: if .. elif .. else

+ loops: while , for .. in, break , continue

Supported NumPy features

One objective of Numba is having a seamless integration with NumPy
MNumPy arrays provide an efficient storage method for homogeneous sets of
data. NumPy dtypes provide type information useful when compiling, and the
regular, structured storage of potentially large amounts of data in memory
provides an ideal memary layout for code generation. Numba excels at
generating code that executes on top of NumPy arrays.

NumPy support in Numba comes in many forms:

« MNumba understands calls to NumPy ufunes = and is able to generate

equivalent native code for many of them.

NumPy arrays are directly supported in Numba. Access to Numpy arrays is
very efficient, as indexing is lowered to direct memory accesses when
possible.

Numba is able to generate ufuncs~ and gufuncs~ . This means that it is
possible to implement ufuncs and gufuncs within Python, getting speeds
comparable to that of ufuncs/gufuncs implemented in C extension medules
using the NumPy C APIL.

The following sections focus on the Numpy features supported in nopython

mode, unless otherwise stated. 5/11

Awkward Array, Vector, and soon Hist (PR #293) in Numba

@nb.jit # input Awkward Arrays
def delta_r_matching(array_reco, array_gen, builder):
for reco_event, gen_event in zip(array_reco, array_gen):

builder.begin_list () # output Awkward Array
for reco in reco_event: # nested 1list
best_i = -1
best_dr = -1.0
for i, gen in enumerate (gen_event): # nested 1ist
dr = reco.deltaR(gen) # Vector!

if best_i1 < 0 or dr < best_dr:
best_i = i
best_dr = dr
if best_i < 0:
builder.append (None)
else:
builder.append(gen_event [best_1i])
builder.end_list ()

return builder
6/11

Awkward Array/Numba interface is designed for quick excursions

1. No memory management: Awkward Arrays passed to @nb. jit functions as
borrowed references and cannot be created in the @nb. jit function.

7/11

Awkward Array/Numba interface is designed for quick excursions

1. No memory management: Awkward Arrays passed to @nb. jit functions as
borrowed references and cannot be created in the @nb. jit function.

2. Therefore, the ak . = functions can't be called in any @nb. jit functions.
Only iteration (nested for loops) is allowed.

7/11

Awkward Array/Numba interface is designed for quick excursions

1. No memory management: Awkward Arrays passed to @nb. jit functions as
borrowed references and cannot be created in the @nb. jit function.

2. Therefore, the ak . = functions can't be called in any @nb. jit functions.
Only iteration (nested for loops) is allowed.

3. Runtime representation of every Awkward Array in @nb. jit is (roughly)
template <typename AwkwardNodeType>
struct AwkwardArrayView {

size_t pos; // nesting level (index in arrayptrs)
size_t start, stop; // view within this nesting level
void+* arrayptrs; // pointers to actual array data
voidx+* sharedptrs; // workaround for C++ memory management
PyObject* pylookup; // keep borrowed references in scope

}i // total: 48 bytes

with type-specific code generated for each AwkwardNodeType.

7/11

Imagine doing the same thing in Julia, with t

>>>
>>>
>>>

>>>
>>>
>>>

Same scope

gen_event [best_1i])

from julia import Julia # PyJdulia
j1 = Julia(compiled_modules=False)
Jjl.eval ("""
function delta_r_matching(array_reco, array_gen, builder)
for (reco_event, gen_event) in zip(array_reco, array_gen)
builder.begin_list ()
for reco in reco_event
(best_i, best_dr) = (nothing, nothing)
for (i, gen) in enumerate (gen_event)
dr = reco.deltaR(gen)
if isnothing(best_1i) || dr < best_dr
(best_i, best_dr) = (i, dr)
end
end
builder.append (isnothing (best_i) ? nothing
end
builder.end_list ()
end
end
nn ")

array_reco and array_gen are Awkward Arrays

builder = jl.delta_r_matching(array_reco, array_gen,

result = builder.snapshot ()

ak.ArrayBuilder ()

8/11

Fast iteration over Awkward Arrays in Julia

» would be a reasonably small-scope project (3 months?)
» would offer an alternative to Numba with the advantages of Julia

» would be an incentive for physicists to take quick excursions into Julia.

9/11

Perspective of a busy physicist:

My iterative algorithm really can't be columnar.

| could try to write a Numba function for it, but |
keep running into huge type error messages for
code that works in uncompiled Python.

Or | could try writing a Julia function. The syntax
is a little different and needs to be in a separate
file or string, but the error messages make more
sense, and it always works if it's valid Julia code.

This Julia's not bad. | could do more of my analysis
in it. | should pester Jim to rewrite Awkward Array

10/11

Conclusion /proposal

1. Teach PylJulia to recognize Awkward Arrays (ArrayBuilders?) as arguments.

11/11

Conclusion /proposal

1. Teach PylJulia to recognize Awkward Arrays (ArrayBuilders?) as arguments.

2. Minimal runtime representation, e.g.
struct AwkwardArrayView{AwkwardNodeType}
pos: :UInté64 # nesting level (index in arrayptrs)
start::UInt64 stop::UInt64 # view within this nesting level
arrayptrs: :Ptr{Ptr{Cvoid}} # to be cast with 'unsafe wrap'
end # total: 32 bytes

11/11

Conclusion /proposal

1. Teach PylJulia to recognize Awkward Arrays (ArrayBuilders?) as arguments.

2. Minimal runtime representation, e.g.
struct AwkwardArrayView{AwkwardNodeType}
pos: :UInté64 # nesting level (index in arrayptrs)
start::UInt64 stop::UInt64 # view within this nesting level
arrayptrs: :Ptr{Ptr{Cvoid}} # to be cast with 'unsafe wrap'
end # total: 32 bytes

3. Generate AwkwardNodeType-dependent code only for iteration.

11/11

Conclusion /proposal

1. Teach PylJulia to recognize Awkward Arrays (ArrayBuilders?) as arguments.

2. Minimal runtime representation, e.g.
struct AwkwardArrayView{AwkwardNodeType}

pos: :UInté64 # nesting level (index in arrayptrs)
start::UInt64 stop::UInt64 # view within this nesting level
arrayptrs: :Ptr{Ptr{Cvoid}} # to be cast with 'unsafe wrap'

end # total: 32 bytes

3. Generate AwkwardNodeType-dependent code only for iteration.

4. Let physicists choose between Numba (same as the surrounding language)
and Julia (more consistent, powerful) for non-columnar algorithms.

11/11

Conclusion /proposal

. Teach PyJulia to recognize Awkward Arrays (ArrayBuilders?) as arguments.

. Minimal runtime representation, e.g.

struct AwkwardArrayView{AwkwardNodeType}
pos: :UInté64 # nesting level (index in arrayptrs)
start::UInt64 stop::UInt64 # view within this nesting level
arrayptrs: :Ptr{Ptr{Cvoid}} # to be cast with 'unsafe wrap'

end # total: 32 bytes

. Generate AwkwardNodeType-dependent code only for iteration.

. Let physicists choose between Numba (same as the surrounding language)
and Julia (more consistent, powerful) for non-columnar algorithms.

. This may be a “gateway” to Julia: strongly motivated (speed), small
up-front commitment; encourages physicists to use it more if they like it.

11/11

Conclusion /proposal

1. Teach PylJulia to recognize Awkward Arrays (ArrayBuilders?) as arguments.

2. Minimal runtime representation, e.g.
struct AwkwardArrayView{AwkwardNodeType}
pos: :UInté64 # nesting level (index in arrayptrs)
start::UInt64 stop::UInt64 # view within this nesting level
arrayptrs: :Ptr{Ptr{Cvoid}} # to be cast with 'unsafe wrap'
end # total: 32 bytes

3. Generate AwkwardNodeType-dependent code only for iteration.

4. Let physicists choose between Numba (same as the surrounding language)
and Julia (more consistent, powerful) for non-columnar algorithms.

5. This may be a “gateway” to Julia: strongly motivated (speed), small
up-front commitment; encourages physicists to use it more if they like it.

Anyone interested?

11/11

