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Technical tasks in HEP (analysis)

In the order of data-flow:
1. Read physics data from .root files. (UnROOT.jl)
2. Handle custom classes and physics objects (LVCyl.jl)
3. Process the data, usually a reduction into histograms. (FHist.jl)
4. Tinker with the script/program you wrote, usually for optimization or physics reason,

repeat many times. (Revise.jl)
5. * Run on accelerator computing resource. (CUDA.jl)

(Then, add “fast” and “in parallel”(built-in “green” threads) to all of the above.)
This set of slides focus on the work done in the UnROOT.jl. The main authors at this moment
in time are:

▶ Nick Amin1

▶ Tamas Gal (creator)
▶ Jerry Ling

1Thanks Nick for the visualizations.
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https://github.com/tamasgal/UnROOT.jl
https://github.com/JuliaHEP/LVCyl.jl
https://github.com/Moelf/FHist.jl
https://github.com/timholy/Revise.jl
https://github.com/JuliaGPU/CUDA.jl
https://docs.julialang.org/en/v1/manual/multi-threading/
https://github.com/aminnj
https://github.com/tamasgal
https://github.com/Moelf


State of the UnROOT.jl

▶ Used in production at KM3NeT + 2 LHC detector analysis
▶ Reading most used objects and data from root file:

▶ TTree, TBranch, TDirectory, TNtuple, TH1/2D
▶ Flat, Jagged, Doubly jagged
▶ TLorentzVector and more custom structure
▶ As a reference, we can read all branches of CMS’s NanoAOD.

▶ Unified user-level interface and it is Fast.
▶ Less is more

▶ Doesn’t require 4 different chunking functions or 3 different ways of looping.
▶ Users simply do everything they already knew, by treating the TTree as a table (they are

tables.), including Query-ing and multi-threading.
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https://www.km3net.org/
https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookNanoAOD


1000 Feet View of .root

The data almost always live inside a “branch”, the purpose of most of the logical metadata
stuff: File Header, Streamer etc. are there just so we can find the data’s TKey , which tells us
where and how data are stored inside the file.
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100 Feet View of TBranch

The element type of a branch is fixed, meaning every event in a branch has to have the same
type. But they can be custom structure (e.g. TLorentzVector) and/or “jagged”. This
information lives in the TBranch streamer object in a non-trivial way.
A branch is further divided into many “baskets”. These baskets are not arranged one next to
another in the file. The TBranch objects contains the following:

▶ fBasketSeek : [248, 34865, 65932, 95550, 125071,…]
fBasketSeek tells us where (in terms of bytes offsets from the beginning of the file) is each
basket located, in this particular example first basket starts at 248th byte.
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LazyTree
When you bundle many branches together, you get a tree. Most of the time users are not
randomly accessing indices, they iterate over the TTree. Baskets are usually small, O(KB) ~
O(MB)

basket 1Muon_pt

Muon_eta

nMuon basket 1

2 3 4 5

basket 1 2 3 4 5

2 3

single
eventbranches

The underlying baskets of different branches are not aligned in general. We simply cache the
last-used basket for each branch in RAM (a.k.a basket cache), such that new basket are
read/decompressed as needed.
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Lazy to the Last Second

The interface is simple enough:
for evt in mytree

if evt.nMuon != 4
continue

end
# access more branches

end

mytree can have many many branches, and which branches need “access” can dynamically
depend on the event content. LazyTree is designed such that evt in the above example is still
lazy, no data is read until evt.nMuon line.
The evt merely keeps track of which TTree it comes from and which event number it is, when
evt.nMuon happens, it effectively does nMuonBranch[evt_idx] .

7 / 19



Composable Multi-Threading

To enable parallel access of a tree/branch, we only need to make sure the basket cache is
thread-local and everything else is already thread-friendly:
# from Polyester.jl
@batch for evt in mytree

evt.nMuon < 4 && continue
# more stuff

end
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Composable Multi-Threading

During parallel access, threads work on disjoint ranges, roughly speaking if we have 100 events
and 4 threads, the 1st thread will work on 1:25 , the last thread will work on 76:100 , avoiding
the race-condition in basket access.
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Custom Class Support

ROOT is immensely feature-rich, and users sometimes need to handle custom data structures
when reading .root files. UnROOT provides an (beta) interface allowing users to hook into the
data parsing in 2 steps.
Raw branch data is always available, so the only missing piece is an interpretation function:
1. Provide a classname mapping: Dict("TLorentzVector" => LorentzVector{Float64})
2. Specialize (extend) function:

UnROOT.interped_data(rawdata, rawoffsets, ::Type{LVF64}, ::Type{J})
3. Profit.

Already being used in KM3NeT for real-time event reconstruction, high-level analysis and time
calibration consistency checks.
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https://tamasgal.github.io/UnROOT.jl/dev/advanced/custom_branch/


Conclusion and Future Work

▶ UnROOT.jl is ready for production around the “analysis” step
▶ “around”, because could do analysis on lower level data, if needed.
▶ fast and integrate seamlessly with Julia ecosystem for tabular processing and multi-threading.

▶ The ability to write to .root files has not been a priority so far:
▶ usually not performance critical
▶ not many ecosystem advantages (e.g. no need for AutoDiff to know you’re writing to disk)
▶ already can do it via PyCall.jl + uproot

▶ Low-hanging fruit:
▶ Better Tables.partitions , helps writing. (github issue)
▶ Optimize slicing (github issue)

▶ Plan to support xrootd via Go-HEP/xrootd since Go compiles to ccall() -able libraries
nicely.
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https://github.com/JuliaPy/PyCall.jl
https://github.com/tamasgal/UnROOT.jl/issues/114
https://github.com/tamasgal/UnROOT.jl/issues/113
https://hepsoftwarefoundation.org/gsoc/2018/proposal_GoHEPxrootd.html


Backups: Mini Benchmarking
To understand if we’re doing anything “stupid” in our naive implementation, we made
benchmarks comparing the performance of UnROOT with solutions provided by ROOT:

Table 1: “Compiled” means g++ -O2 .

Time (s)
PyROOT RDataFrame 40.20
Compiled for-loop (bind branch) 28.15
Compiled RDF 19.82
Julia (cold) 20.58
Julia (warm) 19.80
Compiled RDF (4-threads) 5.64
Julia (4-threads) 5.06

Conclusion: we’re probably not doing something super bad. It doesn’t really matter if Julia is
slightly faster or slower than the fully compiled C++ code, the interactivity, flexibility, and
being an expressive high-level language should make it worthwhile.
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https://github.com/Moelf/UnROOT_RDataFrame_MiniBenchmark/tree/master/composite_benchmarks


Getting hands on the data

Despite the overall complexity of .root file format, after the metadata extraction, dumping
data from one event to the next is relatively straightforward.
Here’s a schematic of a single basket, the TBasket contains the information regarding
compression algorithm etc. All of the data we actually care about are inside content and
offsets (in the case where data is jagged).

4 bytes 4 bytes
┌───────┬─────────┬──────────────────────────────┬─────┬────────────┬───┐
│ TKey │ TBasket │ content │ len │ offsets │ 0 │
└───────┴─────────┴──────────────────────────────┴─────┴────────────┴───┘

│← fLast - fKeylen →│ │
│ │
│← fObjlen →│

Reference discussion
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https://groups.google.com/g/polyglot-root-io/c/yeC0mAizQcA/m/gdPLyAH9AQAJ


Getting hands on the data

Due to this design, the smallest unit of reading .root file is a basket – you need to read and
decompress one basket even if you just want one event (because in general partial
decompression is impossible, also offsets may be needed). Usually the size of basket is ~ few
MB, so it’s not an issue to keep the last-used one in RAM (basket cache).
Thus, the logical steps for reading data are:
1. Find which basket the event number belongs to by using fBasketEntry .
2. Parse TBasket to find out compression algorithm and raw bytes length
3. Read and decompress the raw bytes in this basket (raw bytes = Vector{UInt8})
4. Reinterpret the bytes into data (according to the metadata) and offsets (for jagged branch)
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Building Block: LazyBranch

The tricky part is making the interpreted data available to user-level while maintaining the
performance. The starting point is:
julia> typeof(mybranch)
LazyBranch{Vector{Int32}, UnROOT.Offsetjagg, ...

julia> mybranch[54]
3-element view(::Vector{Int32}, 229:231) with eltype Int32:
50
51
52

This would use the machinery described in the previous slide. Despite Julia’s native support of
jagged array (very fast even), to reduce memory allocation, we use ArraysOfArrays.jl for jagged
branch. In this case, the 54th event’s data is at 229:231 of the basket, and we non-copy
viewed it.
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https://github.com/JuliaArrays/ArraysOfArrays.jl


Building Tree from Branches

The branches of a tree are totally independent, so it’s not conceptually challenging to just
“bundle them together” and make a Tree .
Due to the larger-than-RAM nature, you might think we’re about to reinvent Dask -like lazy
dataframe.
Fortunately, we don’t need to. In fact the ȷulıa counterpart of pandas , DataFrames.jl already
supports lazy column. More precisely, it “doesn’t care” what your columns are as long as they
have defined length and indexing interface.
But we use TypedTables.jl (which supports lazy column for the same reason) instead due to
one important factor: performance.
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https://github.com/JuliaData/DataFrames.jl
https://github.com/JuliaData/TypedTables.jl


Type Stability of LazyBranch and LazyTree
ȷulıa includes powerful inspection tools you can look at LLVM or assembly. We just want
@code_warntype and see for ourselves that there’s no boxing or instability:
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https://docs.julialang.org/en/v1/manual/performance-tips/#man-code-warntype


Type Stability

Two kinds of type stability:
1. Can the return type be inferred from just the types of the inputs?
2. Can the types of all variables in the function bodied be inferred?

The second point manifests in any user function, consider an analysis function contains the
following:
for evt in mytree

compute(evt.Muon_pt)
# more stuff

end
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Type Stability

for evt in mytree
compute(evt.Muon_pt)
# more stuff

end

If the type of evt.Muon_pt is unclear to compiler, then ȷulıa has no choice but to dynamically
dispatch (call) the function compute() , which results a slow down.
Type instability can also cause slow down via what’s called “boxing/unboxing” which is
essentially handling variable of unknown type in a “box” until used, this causes allocation ⇒
slow down.
This leads us to TypedTable.jl , which is a thin wrapper around the built-in NamedTuple . It
retains the type stability of accessing each branch when we put branches together into a tree.

19 / 19


