
https://root.cern

ROOT
Data Analysis Framework

ROOT I/O and 
Foreign Languages

Jakob Blomer with material from Philippe Canal

https://root.cern


2

HEP Event Data I/O

Why invest in a tailor-made I/O system

● Capable of storing the HEP event data model: 
nested, inter-dependent collections of data points

● Performance-tuned for HEP analysis workflow (columnar 
binary layout, custom compression etc.)

● Automatic schema generation and evolution for
C++ (via cling) and Python (via cling + PyROOT)

● Integration with federated data management tools 
(XRootD etc.)

● Long-term maintenance and support

TTree & RNTuple
Example EDM



The ROOT File

🔹 In ROOT, objects are written in files* (“TFile”)
🔹 TFiles are binary and have: a header, records and can be compressed 

(transparently for the user)
🔹 TFiles have a logical “file system like” structure

● e.g. directory hierarchy
🔹 TFiles are self-descriptive:

● Can be read without the code of the objects streamed into them
● E.g. can be read from JavaScript

* this is an understatement - we’ll not go into the details.

3



ROOT File Description

4



ROOT File Specification

5



Event Data and ROOT Files

🔹 A ROOT file can be seen as a hierarchically organized container of objects
● E.g. a file can contain directories with histograms

🔹 In addition, ROOT files can also contain event data
● E.g., a series of TEvent objects for a user-defined TEvent class

🔹 Event data stored in a TTree (or RNTuple, see later) is usually written as a set 
of many objects

🔹 TTree and RNTuple have a custom, internal serialization format 
(columnar layout)

🔹 A binary format within the TFile binary format

6



Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→ 

columns
or “branches”← 

7

can contain complex 
c++ objects



Anatomy of a Tree

8

Branch #1
Entries 0 .. N-1

File
Header

#2
0 .. N-1

#3
0 .. N-1

#1
N ... 2N-1

#2
N .. 2N-1

#3
N .. 2N-1

Cluster Cluster

TTree
Meta Data

File
Schema 
Evolution 
Support

#1
4N ... 

#2
4N ... 

#3
4N … 

Cluster
#1

3N ... 

#2
3N 
… 

#3
3N 
… 

Cluster

#1
2N ... 3N-1

#2
2N .. 3N-1

#3
2N .. 3N-1

Cluster

#1
5N ... 

#2
5N ... 

#3
5N ... 

Cluster

#1
6N ... 6.9*N-1

#2
6N …

#3
6N …

Cluster
#1

7N …
#2

7N …

#3
7N 
…

Cluster
#1

6.9*N ...

BasketBasket Basket Basket



ROOT Data Access Options

🔹 ROOT can read, write, and represent data in C++

🔹 ROOT can read, write, and represent data in Python through pyROOT 
(dynamic binding between C++ and Python)
● Can also export ROOT trees to numpy arrays

🔹 ROOT can read and represent trees and the most common classes 
(histograms, graphs, etc.) in JavaScript with JSROOT
● Can also export objects in JSON

https://root.cern/doc/master/df026__AsNumpyArrays_8py.html
https://root.cern.ch/js/
https://root.cern.ch/doc/master/classTBufferJSON.html


3rd Party Implementations of ROOT I/O

🔹 There are several projects that re-implement parts of the ROOT file 
format
● Julia: unroot
● Python: uproot
● Go: hep/groot
● Java/Scala: FreeHEP rootio
● Rust: alice-rs/root-io

🔹 Typically supported features: reading of simple objects (histograms) 
and trees with a simple structure (numerical types and vectors 
thereof)

https://github.com/tamasgal/UnROOT.jl
https://uproot.readthedocs.io/en/latest/
http://go-hep.org/x/hep/groot
https://java.freehep.org/freehep-rootio/index.html
https://github.com/cbourjau/alice-rs/tree/master/root-io


Facets of a full I/O system
In addition to reading the most common file contents, the full I/O system has many more 
aspects, such as

🔹 Parallel and distributed reading & writing

🔹 I/O scheduling (read-ahead, request coalescing, etc)

🔹 Beyond file system I/O: HTTP, XRootD, object stores

🔹 Schema evolution

🔹 Data set combinations: chains, friends, indexes, merging

🔹 Complex object hierarchies (e.g. for ESD EDMs)

🔹 User customizations
● E.g. skip “transient data members”

● I/O customization rule (transformation of data)
11



12

Motivation for RNTuple

1. HL-LHC challenge: major milestone on the way towards future accelerators and 
detectors

○ From 300fb-1 in run 1-3 to 3000fb-1 in run 4-6
○ 10B events/year to 100B events/year
○ Real analysis challenge depends on several factors: number of events, analysis 

complexity, number of reruns, etc.
■ As a starting point, preparing for ten times the current demand

2. Full exploitation of modern storage hardware
○ Ultra fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)
○ Flash storage is inherently parallel → asynchronous, parallel I/O key
○ Heterogeneous computing hardware → GPU should be able to load data 

directly from SSD, e.g. to feed ML pipeline
○ Distributed storage systems move from POSIX to object stores

 

At 10GB/s, we have ~3μs to process a 32kB block
→ Suggests an updated software design



13

RNTuple Goals

Based on 25+ years of TTree experience, we redesign the I/O subsystem for

● Less disk and CPU usage for same data content
○ 25% smaller files, x2-5 better single-core performance
○ 10GB/s per box and 1GB/s per core sustained end-to-end throughput 

(compressed data to histograms)

● Native support for object stores (targeting HPC)

● Lossy compression

● Systematic use of exceptions to prevent silent I/O errors



14

RNTuple Development Plan

Proof of 
concept Prototype First 

exploitation
Pre-

production Production

~2018-19 ~2019-20 ~2021-22 ~2022-23 ~2023-24

We see RNTuple as a Run 4 technology

● Class design

● File format 
R&D

● Interplay 
with other 
ROOT classes

● Performance 
validation

● Interplay 
with 
experiment 
frameworks

● Schema 
evolution 

● PB scale test 
cases

● Production 
tests with 
last-stage 
ntuples

● Ready to use 
for new runs

Available now in ROOT::Experimental
Note: TTree technology will remain available for the 1EB+ existing data sets



RNTuple Class Design

15

Modular storage layer that supports 
files as data containers but also 
file-less systems (object stores)

Seamless transition from TTree to RNTuple

→ RNTuple v1 Format Specification

https://github.com/jblomer/root/blob/ntuple-binary-format-v1/tree/ntuple/v7/doc/specifications.md


RNTuple Format Evolution

16

🔹 Key binary layout changes wrt. 
TTree

● More efficient nested collections
● More efficient boolean values 

(bitfield), interesting for trigger bits
● experimenting with “split floats”
● Little-endian values (allows for 

mmap())

Implementation uses templates to slash 
memory copies and virtual function calls in 

common I/O paths
 

🔹 Supported types
● Boolean
● Integers, floating point
● std::string
● std::vector, std::array
● std::variant
● User-defined classes
● More classes planned 

(e.g. std::chrono timepoints)

Fully composable (including aggregation, 
inheritance) within the supported type system



libRNTupleLite (under development)

17

libROOTFoundation

libCore libROOTIOLite

libROOTNTupleLitelibRIO

libROOTNTuple

Depends on LLVM/cling

● The libRNTupleLite library is built just 
like any other ROOT libraries in ROOT 
proper (including modules, dictionaries 
etc)

● The libRNTupleLite does not use any 
infrastructure from libCore but only 
from libROOTFoundation

● Functionality:
○ RIOLite: RRawFile without 

support for plugins, i.e. only 
local files

○ ROOTNTupleLite: Provide 
access to meta-data (schema 
etc.) and data pages

C
 S

hi
m



18

● C API header and dynamic library libROOTNTupleLite.so
○ Header files will be in 

■ io/iolite/inc/ROOT/IOLite.h
■ tree/ntuplelite/inc/ROOT/NTupleLite.h

● Provides a C wrapper to the C++ libROOTRNTupleLite.so

● Provided functionality:
○ Open an RNTuple that is stored in a local ROOT file
○ Read the schema: fields, columns, pages, and their relationships
○ Read pages into void * memory areas given column id and page id

■ Takes care of decompressing and unpacking pages along the way

● Aims at being a building block for 3rd party tool builders

libRNTupleLite C API

https://github.com/jblomer/root/blob/ntuple-minilib/tree/ntuple/v7/inc/ROOT/RNTupleLight-C.h


ROOT I/O: Support 

Full support by the ROOT Team:

🔹 I/O through the ROOT C++ library

🔹 pyROOT

🔹 Conversion of simple structures to numpy arrays

🔹 JSROOT 

🔹 JSON serialization of objects

🔹 In the future: C API provided by RNTupleLite

Indirect support (“support the maintainers”)

🔹 Third-party implementation of the binary format (uproot, unroot, Java, Go, ...)



Backup slides

20



Resources

🔹 ROOT Website: https://root.cern
🔹 Introduction material: https://root.cern/getting-started
🔹 Reference Guide: https://root.cern/doc/master/index.html
🔹 Training material: https://github.com/root-project/training
🔹 Forum: https://root-forum.cern.ch

21

https://root.cern
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://github.com/root-project/training
https://root-forum.cern.ch


RNTuple Format Breakdown

22

Cluster:
🔹 Block of consecutive complete events
🔹 Unit of thread parallelization (read & write)
🔹 Typically tens of megabytes

Page/Basket:
🔹 Unit of memory mapping or (de)compression
🔹 Typically tens of kilobytes



Comparison With Other I/O Systems

23J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

https://indico.cern.ch/event/567550/contributions/2628878/

