ROQOT 1/0 and
Foreign Languages

Jakob Blomer with material from Philippe Canal

Data Analysis Framework

https://root.cern

HEP Event Data |/0O

Why invest in a

Example EDM

) cvent {
Capable of storing the HEP event data model: std::vector<Particle> fPtcls;

nested, inter-dependent collections of data points std::vector<Track> fTracks;

Performance-tuned for HEP analysis workflow (columnar particle {
binary layout, custom compression etc.) fPt;

Track &fTrack;
Automatic schema generation and evolution for '
C++ (via cling) and Python (via cling + PyROQOT) e

td::vector<Hit> fHits;
Integration with federated data management tools
(XRootD etc.)

Hit {
26 FY, T2

Long-term maintenance and support

The ROOT File

¢+ In ROOQT, objects are written in files* (“TFile”)
¢+ TFiles are binary and have: a header, records and can be compressed
(transparently for the user)
¢ TFiles have a logical “file system like” structure
e e.g. directory hierarchy

¢ TFiles are self-descriptive:
e (Can be read without the code of the objects streamed into them
e E.g. can beread from JavaScript

* this is an understatement - we'll not go into the details.

ROOT File Description

ROOT File description

| 3 [1
g" g" gl—
23T § Object 4 ted | ET
fi gi Data |38 gg gg
L-- ~~~~~~~~ | Ej S
{BEGIN g T “-e... fEND
Logical Record Header (TKEY)

fNbytes: Length of compressed object
fVersion: Key version identifier

fObjLen: Length of uncompressed object
fDatime: Date/Time when written to store
fKeylen: Number of bytes for the key
fCycle : Cycle number

fSeekKey: Pointer to object on file
fSeekPdir: Pointer to directory on file
fClassName: class name of the object
fName: name of the object

fTitle: title of the object

ROOT File Specification

Byte Range Record Name Description
1->4 "root" Root file identifier
5->8 fVersion File format version
9->12 fBEGIN Pointer to first data record
13->16 [13->20] | fEND Pointer to first free word at the EOF
17->20 [21->28] | fSeekFree Pointer to FREE data record

21->24 [29->32] | fNbytesFree Number of bytes in FREE data record

25->28 [33->36] | nfree Number of free data records

29->32 [37->40] | fNbytesName Number of bytes in TNamed at creation time

33->33 [41->41] | fUnits Number of bytes for file pointers

34->37 [42->45] | fCompress Compression level and algorithm

38->41 [46->53] | fSeekinfo Pointer to TStreamerinfo record

42->45 [54->57] | fNbytesInfo Number of bytes in TStreamerinfo record
46->63 [58->75] | fUUID Universal Unique ID

Event Data and ROOT Files

¢+ A ROOQT file can be seen as a hierarchically organized container of objects
e E.g. afile can contain directories with histograms
¢ In addition, ROOT files can also contain event data
e E.g., aseriesof TEvent objects for a user-defined TEvent class
¢ Event data stored in a TTree (or RNTuple, see later) is usually written as a set
of many objects
¢ TTree and RNTuple have a custom, internal serialization format
(columnar layout)
¢ Abinary format within the TFile binary format

Columnar Representation

columns
or "branches”

can contain complex
c++ objects

entries
or events—
Or rows

Anatomy of a Tree

Cluster Cluster Cluster

File Branch #1 #2 #3 #1 #3 #1 #2 #3

Header Entries 0 .. N-1 0..N-1 0..N-1 N ... 2N-1 N .. 2N-1 2N ... 3N-1 2N .. 3N-1 2N .. 3N-1

Cluster Cluster

f Cluster V Cluster \

#1 Schema
6N ... 6.9*N-1 Meta Data Evolution

File

Support

Basket Baske Basket Basket

ROOT Data Access Options

¢ ROOT can read, write, and represent data in C++

¢+ ROOT can read, write, and represent data in Python through pyROOT
(dynamic binding between C++ and Python)
e (an also export ROOT trees to numpy arrays

¢ ROOT can read and represent trees and the most common classes
(histograms, graphs, etc.) in JavaScript with [SROOT
e (an also export objects in JSON

https://root.cern/doc/master/df026__AsNumpyArrays_8py.html
https://root.cern.ch/js/
https://root.cern.ch/doc/master/classTBufferJSON.html

3rd Party Implementations of ROOT I/0

. There are several projects that re-implement parts of the ROOT file

format
e Julia: unroot
e Python: uproot
e Go: hep/groot
e Java/Scala: FreeHEP rootio
e Rust: alice-rs/root-io

. Typically supported features: reading of simple objects (histograms)
and trees with a simple structure (numerical types and vectors
thereof)

https://github.com/tamasgal/UnROOT.jl
https://uproot.readthedocs.io/en/latest/
http://go-hep.org/x/hep/groot
https://java.freehep.org/freehep-rootio/index.html
https://github.com/cbourjau/alice-rs/tree/master/root-io

Facets of a full 170 system

In addition to reading the most common file contents, the full I/O system has many more

aspects, such as

1 4

L 4

Parallel and distributed reading & writing

I/0 scheduling (read-ahead, request coalescing, etc)
Beyond file system 1/0: HTTP, XRootD, object stores
Schema evolution

Data set combinations: chains, friends, indexes, merging
Complex object hierarchies (e.g. for ESD EDMs)

User customizations
® E.g. skip “transient data members”

® |/O customization rule (transformation of data)

11

Motivation for RNTuple

1. HL-LHC challenge: major milestone on the way towards future accelerators and
detectors
o From 300fb™in run 1-3 to 3000fb™" in run 4-6
o 10B events/year to 100B events/year

o Real analysis challenge depends on several factors: number of events, analysis
complexity, number of reruns, etc.

o
Wi s

m As a starting point, preparing for ten times the current demand :a "
)‘ 980
2. Full exploitation of modern storage hardware
o Ultra fast networks and SSDs: 10GB/s per device reachable (HDD: 250MB/s)
o Flash storage is inherently parallel = asynchronous, parallel I/0O key
o Heterogeneous computing hardware = GPU should be able to load data @ OPTANE DCO»

directly from SSD, e.g. to feed ML pipeline PER SIS T

o Distributed storage systems move from POSIX to object stores

-
At 10GB/s, we have “3us to process a 32kB block e
= Suggests an updated Softwa re design Lo i nw-w-'«m"'w‘ L L G

RNTuple Goals

Based on 25+ years of TTree experience, we redesign the I/0O subsystem for

e [essdisk and CPU usage for same data content
o 25% smaller files, x2-5 better single-core performance
o 10GB/s per box and 1GB/s per core sustained end-to-end throughput
(compressed data to histograms)

e Native support for object stores (targeting HPC)

Lossy compression

Systematic use of exceptions to prevent silent I/O errors

13

RNTuple Development Plan

~2018-19 ~2019-20 ~2021-22 ~2022-23 ~2023-24
jprooney)> Prototype >> F'!’St) >} e !) Production)
: concept exploitation production :
e (lass design e Interplay e Interplay e PBscaletest e Readytouse
with other with cases for new runs
e File format ROOT classes experiment .
R&D frameworks e Production
e Performance tests with
validation e Schema last-stage
evolution ntuples

We see RNTuple as a Run 4 technology

Available now in ROOT: :Experimental
Note: TTree technology will remain available for the 1EB+ existing data sets
14

RNTuple Class Design

Seamless transition from TTree to RNTuple

Event iteration Modular storage layer that supports
Reading and writing in event loops and throughliRDataFrame files as data containers but also
RNTupleDataSource, RNTupleView, RNTupleRea@®Tr7/Writer

file-less systems (object stores)

rApproximate translation between TTree and
S g RNTuple classes:
Primitives layer / simple types P
“Columns” containing elements of fundamental types (float, int,...) TTree ~ RNTupleReader
grouped into (compressed) pages and clusters RNTupleWriter
RColumn, RColumnElement, RPage TTreeReader ~ RNTupleView
TBranch ~ RField
Storage layer / byte ranges ??aSké;Ch ~ I}:g‘l‘get -
RPageStorage, RCluster, RNTupleDescriptor L e & i J

— RNTuple v1 Format Specification

15

https://github.com/jblomer/root/blob/ntuple-binary-format-v1/tree/ntuple/v7/doc/specifications.md

RNTuple Format Evolution

+ Key binary layout changes wrt. ¢ Supported types
TTree e Boolean

e More efficient nested collections ¢ Integer-s, floating point
e More efficient boolean values * std:string

(bitfield), interesting for trigger bits ° std::vegtor, std::array
e experimenting with “split floats” ¢ std::varlqnt
e Little-endian values (allows for * User-defined classes

e More classes planned

mmap()) . .
(e.g. std::chrono timepoints)
Implementation uses templates to slash
memory copies and virtual function calls in
common I/0 paths

Fully composable (including aggregation,
inheritance) within the supported type system

16

libRNTupleLite (under development)

e The libRNTuplelLite library is built just
libROOTNTuple like any other ROOT libraries in ROOT
proper (including modules, dictionaries
etc)
libRIO liIbROOTNTupleLite
= e The libRNTupleLite does not use any
;—,E) infrastructure from libCore but only
libCore libROOTIOLite O from libROOTFoundation
e Functionality:
libROOTFoundation o RIOLite: RRawFile without
support for plugins, i.e. only
local files
. Depends on LLVM/cling o ROOTNTupleLite: Provide

access to meta-data (schema
etc.) and data pages

17

liboRNTupleLite C API

e C APl header and dynamic library libROOTNTuplelLite.so
o Header files will be in
m io/iolite/inc/ROOT/IOLite.h
m tree/ntuplelite/inc/ROOT/NTupleLite.h

e Provides a C wrapper to the C++ [ibROOTRNTupleLite.so

e Provided functionality:
o Open an RNTuple that is stored in a local ROOT file
o Read the schema: fields, columns, pages, and their relationships
o Read pages into void * memory areas given column id and page id
m Takes care of decompressing and unpacking pages along the way

e Aims at being a building block for 3rd party tool builders
18

https://github.com/jblomer/root/blob/ntuple-minilib/tree/ntuple/v7/inc/ROOT/RNTupleLight-C.h

ROOT I/O: Support

Full support by the ROOT Team:
I/0 through the ROOT C++ library

L 4

L 4

pyROOT
¢ Conversion of simple structures to numpy arrays

JSROOT

2

L 4

JSON serialization of objects

L 4

In the future: C API provided by RNTupleLite

Indirect support (“support the maintainers”)

¢ Third-party implementation of the binary format (uproot, unroot, Java, Go, ...)

Backup slides

20

Resources

¢ ROOT Website: https://root.cern

¢ Introduction material: https://root.cern/getting-started

¢+ Reference Guide: https://root.cern/doc/master/index.htmi
¢ Training material: https://github.com/root-project/training
¢ Forum: https://root-forum.cern.ch

21

https://root.cern
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://github.com/root-project/training
https://root-forum.cern.ch

RNTuple Format Breakdown

Dataset / File
I I
Header Page C++ collections become offset columns Footer
; ! struct Event {
Cluster int £Id:
vector<Particle> fPtcls;
Approximate translation between TTree and RNTuple concepts: }:
Basket =~ Page struct Particle {
Leaf ~ Column float fE;
Cluster =~ Cluster vector<int> fIds;
};
Cluster:
Page/Basket:

¢ Block of consecutive complete events
¢ Unit of thread parallelization (read & write)
+ Typically tens of megabytes

¢ Unit of memory mapping or (de)compression
+ Typically tens of kilobytes

22

Comparison With Other I/O Systems

ROOT PB SQlite HDF5 Parquet Avro
Well-defined encoding v v v v v v
C/C++ Library v v v v v v
Self-describing v » v v v v
Nested types v v ? ? v v
Columnar layout v M » ? v »
Compression v v ») v g
Schema evolution v M v N ? ?

v/ = supported
= unsupported
7 = difficult / unclear

J. Blomer, A guantitative review of data formats for HEP analyses ACAT 2017 23

https://indico.cern.ch/event/567550/contributions/2628878/

