
Julia for large
HEP projects?

“I believe the hard part of building software to be the
specification, design, and testing of this conceptual
construct, not the labor of representing it and testing
the fidelity of the representation. We still make syntax 
errors, to be sure; but they are fuzz compared with
the conceptual errors in most systems. If this is true,
building software will always be hard. 
There is inherently no silver bullet.”
[F. P. Brooks, "No Silver Bullet: Essence and Accidents 
of Software Engineering", IEEE Computer, Vol. 20, No. 4 (1987) 10]

Stefan Kluth
MPI für Physik
Julia for HEP Mini-workshop
27 Sep 2021



 
Julia for big HEP projects? 2

Introduction to discussion
● Whoami? 

– Speak Fortran, C++, python, but not (yet) julia
– OPAL, BaBar, ATLAS, JADE (re-analysis) analyses, 

S&C
– Know about and teach OOP, clean code (a la uncle 

Bob), unit testing, refactoring, ...

● Julia is founded on multiple-dispatch
– Implications for “analysis and design” of large 

software systems? It is different on purpose ...



 
Julia for big HEP projects? 3

Aspects of big projects
● Long lifetime, large codebase, many 

components
– Fortran(77) stretched beyond O(100k) loc
– C++ and OOP: clear interfaces, replaceable core 

components
– Athena, cmssw, geant4, root

● Most of the work spent in maintenance mode
– Bug fixes, enhancements, ports
– Increasing difficulty to keep code “clean”



 
Julia for big HEP projects? 4

Code, test, refactor
Write code 

new feature, bug fix, etc
Efficient build system, scm (git)

Unit / integration tests
protect existing code, 

prove new code
Libraries: gtest, pytest, Junit, ...

Refactoring
Adapt bad interfaces, new

platforms, efficiency bottlenecks, 
ugly code, etc

IDE support, “language server”,
low language complexity



 
Julia for big HEP projects? 5

Today?
● C++ hard to refactor, IDE support incomplete

– In HEP, unit test coverage low, w/o unit test libraries
– Python easier, but unit test coverage?

● Parts of code base difficult to maintain
– Athena, geant4, root, …

● Analyses w/o “big frameworks”
– Multiple small frameworks, “simple” intermediate data 
– Trend points to problems with exp frameworks



 
Julia for big HEP projects? 6

Strawperson questions
● E.g. geantV in Julia?

– Physics and algorithms known, implementation “easy”, but 
maintenance, upgrades, ports?

● Online vs offline algorithms (2nd level software trigger)
– Online: real time app vs GC

● JIT compilation vs shared libraries: deployment?
● Software engineering know-how for julia?

– Relationship to (partially) known OOP paradigms?
– Large investment in OOP knowledge wasted or useful?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

