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Overview of the talk
•A short introduction to heavy-ion (HI) physics and its analysis/reconstruction challenges

•Few selected examples of BDT/network techniques applied to HI physics

•BDT analyses for “rare” hadron identification in PbPb collisions
•Shallow neural networks for jet physics in HI
•DNN for detector calibration of Time-Projection-Chamber for Run3 data taking

•Conclusions and future challenges/opportunities 
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Heavy-ion physics in a nutshell

  

Time
QGP phase Hadronic phase Freeze-outCollision

MADAI Collaboration

Quark-gluon plasma 
radiation and restoration of 

chiral symmetry

QGP microscopic “structure” 
and access to quasi-particles

with quenching measurements

     Hadronization beyond in-
     vacuum fragmentation

→ QCD at extreme temperature and density (Quark Gluon Plasma) to study quark deconfinement (and more)

→ Indirect probes: 
• suppression of high-pT probes (heavy-flavor or jets)
• particle correlations to study fluid-like 
• EM probes (W, photons, …)

https://madai.phy.duke.edu
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Heavy- ion challenges and ML techniques

High-particle density: 
• O(100) more particles than in pp collisions

Interest in low-pT probes  and correlations: 
• e.g. few GeV hadrons, D, B mesons
• low-pT jets 

→ Large background contamination and low S/B
→ Need for detectors with high tracking accuracy and 
    PID capabilities at low pT

ML techniques offer unique opportunities to overcome 
these challenges:
→ few (selected) examples in the upcoming slides!

Large ion collisions (PbPb or AuAu) produces thousands of particles!
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BDT techniques for “rare" signal 
measurements at low pT
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BDT for heavy-flavor measurements
Modification of heavy-flavor hadron yields in PbPb vs pp:
• information about the medium density and properties
• low pT ~ mc is of highest interest 

→ D/B mesons in HI are affected by huge backgrounds
     at low-pT mostly from uncorrelated pair/triplet combination
→ Signal / Background down to 10-6

→ High-purity selection is critical
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BDT for Ds, Λc measurements in PbPb
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BDT performed with a combination of PID and topological selections:
→ measurement to the very low-pT regime, not accessible without ML techniques

Challenges:
• MC/data reweighing, systematic evaluation in pT interval where no standard analysis was possible, …
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33ΛH selection: BDT approach
Selection applied on the BDT score, computed from PID and topological features
●maximisation of the expected significance (assuming thermal production)



Shallow neural networks 
for HI jet physics
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For low pT jets, fluctuations can be on the order of jet itself! 
→Need to subtract the large fluctuating background
→very challenging to low pT (tens GeV) and wide jets (up to R=1)

Reconstruction of inclusive jet  in HI made difficult by the large fluctuating background from the underlying event. pT

JHEP 1203 (2012) 053

pT,rec = pT,raw − ρA
1. Estimate and subtract the pedestal

3. Correct for residual fluctuations via 
unfolding

“Classic”Area based method: 
Pedestal subtraction of event-
averaged momentum density. 

2. Leading track bias to remove fake 
contributions

Calorimeter Towers

Charged Tracks

Underlying Event (UE) subtraction for HI jets

https://link.springer.com/article/10.1007/JHEP03(2012)053
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Use machine learning (ML) to create a mapping to correct the jet for the background

Jet Properties

(Including constituent 
properties)

ML
Corrected Jet pT

Unfold for 
fluctuations and 
detector effects

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)

UE subtraction with ML techniques

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904
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Use machine learning (ML) to create a mapping to correct the jet for the background

Jet Properties

(Including constituent 
properties)

ML
Corrected Jet pT

Unfold for 
fluctuations and 
detector effects

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)

UE subtraction with ML techniques

Training (PYTHIA 
fragmentation)

Train on “hybrid event” 
created by embedding 
PYTHIA jets into Pb-Pb 
Background

Testing

Apply ML estimator to 
hybrid events not used in 
training.  

Shallow neural network 
implemented in scikit-learn. 

3 layers [100,100,50] nodes

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904
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ALI-PERF-339976

δpT = pT,rec − pT,true

Narrow Reduced residual fluctuationsδpT →
Full Jets

Are we getting back to the “truth” (matched PYTHIA 
detector level jet)?

Full Jets

Comparison with standard analysis subtraction 
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Deep neural networks for Time-
Projection-Chamber calibrations in Run3

e-
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Ideally: a very uniform electric field –> accurate tracks measurements

3D information for each track point:
● r𝜑 via the position in the readout chamber
● z via speed and time of drift, s = vt

Time-projection chamber for ALICE tracking

Gas ionization by charged particles.
1.The drift of the ionization electrons to the 

readout chambers.
2.Signal amplified and collected.
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no distortion

with distortion

The positive ions are very slow and distort the electric 
field lines. 
→ The electric field is not constant and not uniform!

Distortion and distortion fluctuations in Run3 TPC
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no distortion

with distortion

The positive ions are very slow and distort the electric 
field lines. 
→ The electric field is not constant and not uniform!

with distortions 
no distortions

CRITICAL: No proper correction → no precise reconstruction of particle trajectories 
             → cannot perform almost any physics analysis!

Shifted reconstructed point positions  
→ worse reconstruction accuracy.

● distortions (E not uniform) 
● distortion fluctuation (E not constant over time) – 

most difficult to correct

⟶

⟶

Distortion and distortion fluctuations in Run3 TPC
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Fluctuation corrections with deep learning

Input: ~ion "current" in each TPC 3D point 
Output: correction of local distortion fluctuations in each direction in 3D space
U-Net: a convolutional neural network for biomedical image segmentation.

Why not using analytic calculations? too slow for a real-time calibration and potentially less accurate 
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TPC resolution: 200 
μm 

Preliminary results on DNN corrections

Preliminary results!
● with proper tuning procedures, the DNN can 
predict the distortion fluctuations within the TPC 
resolution (200 microns) 

Challenges:
• “Semi-online” 
• Optimize granularity of input data
• data augmentation for larger training samples
• speed-up training
• data-driven training inputs ….
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Conclusions and outlook
•BDT and network techniques quickly becoming very important tools for heavy-ion physicists

•Strong impact on current analyses and critical relevance for future high-luminosity runs

•Growing impact on detector reconstruction and calibration in high-multiplicity environments

•Next few years full of challenges and opportunities for ML in HI:
• so far for “selection” tasks BDT are still outperforming DNN. Will this change? 
•Accuracy of MC simulations as the biggest limiting factor in HI analyses with high-statistics Run3 data:

       → ML-based MC reweighing techniques could have a strong impact on our analyses!
•Detector reconstruction and simulation with ML will profit from the large GPUs facilities of LHC experiments
•Need for deeper understanding of systematic “errors” on ML predictions
•….

Thanks for your attention!



BACKUP



● Most precise measurement available 

● Statistical uncertainty lower than the 
published world average uncertainty 

● Models predicting lifetime to be near to the 
free Λ one are favoured 

3ΛH Lifetime

22
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with distortions 
no distortions

Problem: calculate the correction of the distortions and distortion fluctuations 
from the electric field modifications

Requirements:
● precision ~200 μm (TPC resolution)
● new distortion correction for each ~5 ms data interval

Analytic calculations: too slow and potentially less accurate

ML and DNN: effective and fast methods for correcting the  
                        fluctuations

Distortion and distortion fluctuations in Run3 TPC


