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& Overview of the talk

- A short introduction to heavy-ion (HI) physics and its analysis/reconstruction challenges
- Few selected examples of BDT/network techniques applied to Hl physics

- BDT analyses for “rare” hadron identification in PbPb collisions

- Shallow neural networks for jet physics in HI

* DNN for detector calibration of Time-Projection-Chamber for Run3 data taking

- Conclusions and future challenges/opportunities
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) Heavy-ion physics in a nutshell

— QCD at extreme temperature and density (Quark Gluon Plasma) to study quark deconfinement (and more)

MADAI Collaboration

Collision QGP phase Hadfbnib"bhase

d(_)t;?rk-gltéon glas:lna f QGI:j mICI‘OSf[:OpIC _strui:.ttljre Hadronization beyond in-
radiation and restoration o and access to quasi-particles vacuum fragmentation
chiral symmetry with quenching measurements

— Indirect probes:
» suppression of high-pt probes (heavy-flavor or jets)
- particle correlations to study fluid-like
* EM probes (W, photons, ...)
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https://madai.phy.duke.edu

> Heavy- ion challenges and ML techniques

Large ion collisions (PbPb or AuAu) produces thousands of particles!

ALICE

High-particle density:
» O(100) more patrticles than in pp collisions

Interest in low-pT probes and correlations:
* e.g. few GeV hadrons, D, B mesons
* low-pr jets

— Large background contamination and low S/B
— Need for detectors with high tracking accuracy and
PID capabilities at low pr

ML techniques offer unique opportunities to overcome
these challenges:

— few (selected) examples in the upcoming slides!
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BDT techniques for “rare"” signal
measurements at low pr



ALICE

©) BDT for heavy-flavor measurements ®

Modification of heavy-flavor hadron yields in PbPb vs pp:
* Information about the medium density and properties
* low pTt ~ mc IS of highest interest

x10°

- ALICE Preliminary
0-10% Pb-Pb, \s,, = 5.02 TeV

u = (1866.7 = 0.7) MeV/c?
o=(11.6 = 0.7) MeV/c?
S = 50012 + 3539

Counts per 6 MeV/c?
o
~N

O
»

— D/B mesons in HI are affected by huge backgrounds
at low-ptT mostly from uncorrelated pair/triplet combination

— Signal / Background down to 10-6 0.55
— High-purity selection is critical 0.5
D’ - Kt
0.45— and charge conj.
1.5<p_<2GeV/c
0.4 T
0.35

1.8 1.85 1.9 1.95 2
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BDT for Ds, Ac measurements in PbPb

BDT performed with a combination of PID and topological selections:
— measurement to the very low-pt regime, not accessible without ML techniques
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Challenges:

- MC/data reweighing, systematic evaluation in pt interval where no standard analysis was possible, ...
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3AH selection: BDT approach

Selection applied on the BDT score, computed from PID and topological features
emaximisation of the expected significance (assuming thermal production)

Counts / (2.25 MeV/c?)
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Shallow neural networks
for HI jet physics
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o (GeV/c)

Underlying Event (UE) subtraction for Hl jets ®

ALICE

Reconstruction of inclusive jet pr in HI made difficult by the large fluctuating background from the underlying event.

For low pr jets, fluctuations can be on the order of jet itself!
—Need to subtract the large fluctuating background
—very challenging to low pt (tens GeV) and wide jets (up to R=1)

JHEP 1203 (2012) 053

- FastJet k, (p:lrlin = 0.15 GeV/c)
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“Classic”’ Area based method:
Pedestal subtraction of event-
averaged momentum density.

1. Estimate and subtract the pedestal
PTrec = PTraw — pA

Calorimeter Towers

. »
. “ .‘. |
. <4
8
' .' )" 1) 'gu' B W,
Gl A NN
Charged Tracks

2. Leading track bias to remove fake
contributions

3. Correct for residual fluctuations via
unfolding
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https://link.springer.com/article/10.1007/JHEP03(2012)053

@) UE subtraction with ML techniques

Use machine learning (ML) to create a mapping to correct the jet for the background

ML
—_—

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904

ALICE

©) UE subtraction with ML techniques ®

Use machine learning (ML) to create a mapping to correct the jet for the background

Training (PYTHIA
Shallow neural network
iImplemented in scikit-learn.

Testing

Train on “hybrid event”
created by embedding
PYTHIA jets into Pb-Pb

Background

Apply ML estimator to

3 layers [100,100,50] nodes hybrid events not used in
training.

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904
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Are we getting back to the “truth” (matched PYTHIA
detector level jet)?

Comparison with standard analysis subtraction
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Deep neural networks for Time-
Projection-Chamber calibrations in Run3
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ALICE

@) Time-projection chamber for ALICE tracking ®

ggg'éR FIELD CO, GAP Gas ionization by charged particles.

1.The drift of the ionization electrons to the
readout chambers.

READOUT WIRE : -
CHAMBERS 2.Signal amplified and collected.

E
STACK
3D information for each track point:
e o viathe position in the readout chamber
CENTRAL HV . . . B
CHARGED ¢ ECTRODE NNER FIELD ® ZVia speed and time of drift, s = vt
PARTICLE CAGE
ENDPLATE

ldeally: a very uniform electric field — accurate tracks measurements
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& Distortion and distortion fluctuations in Run3 TPC &

ALICE

TPC (one side)

no distortion

+++++++++++++++++++HHEE+

Readout chambers
Central electrode

The positive ions are very slow and distort the electric
field lines.
— The electric field is not constant and not uniform!
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ALICE

& Distortion and distortion fluctuations in Run3 TPC &

TPC (one side)

no distortion

with distortions

+++++++++++H+H+ S E . .
no distortions

Readout chambers
Central electrode

Shifted reconstructed point positions
— Worse reconstruction accuracy.

The positive ions are very slow and distort the electric e distortions (E not.uniform)
field lines. e distortion fluctuation (E not constant over time) —
— The electric field is not constant and not uniform! most difficult to correct

CRITICAL: No proper correction = no precise reconstruction of particle trajectories
— cannot perform almost any physics analysis!
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ALICE

N Fluctuation corrections with deep learning ®

Why not using analytic calculations? too slow for a real-time calibration and potentially less accurate

Input: ~ion "current" in each TPC 3D point
Output: correction of local distortion fluctuations in each direction in 3D space

U-Net: a convolutional neural network for biomedical image segmentation.
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@) Conclusions and outlook ®

ALICE

- BDT and network techniques quickly becoming very important tools for heavy-ion physicists
» Strong impact on current analyses and critical relevance for future high-luminosity runs

- Growing impact on detector reconstruction and calibration in high-multiplicity environments

* Next few years full of challenges and opportunities for ML in HI:
» 50 far for “selection” tasks BDT are still outperforming DNN. Will this change?
» Accuracy of MC simulations as the biggest limiting factor in HI analyses with high-statistics Run3 data:
— ML-based MC reweighing techniques could have a strong impact on our analyses!
» Detector reconstruction and simulation with ML will profit from the large GPUs facilities of LHC experiments
* Need for deeper understanding of systematic “errors” on ML predictions

Thanks for your attention!

G.M. Innocenti (CERN), October 5, 2021, Machine Learning in HEP, a conversation over ice-cream 20



BACKUP



3\H Lifetime

Most precise measurement available

ALICE

Theoretical predictions
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Distortion and distortion fluctuations in Run3 TPC ®

ALICE

Problem: calculate the correction of the distortions and distortion fluctuations
from the electric field modifications

Requirements:
e precision ~200 ym (TPC resolution)

e new distortion correction for each ~5 ms data interval

Analytic calculations: too slow and potentially less accurate

ML and DNN: effective and fast methods for correcting the
fluctuations

with distort

10

No distort
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