
Domain Adaptation via Histogram 
Loss Component

by Hector Castro Noguez
Mentors: Samuel May and Indara Suarez



Machine Learning in Simulation 
● In recent years, machine learning (ML) algorithms have shown tremendous promise in 

improving the sensitivity of results delivered by LHC experiments. 
● While these algorithms are applied on data collected by LHC experiments, it is often 

preferable or even necessary, in the case of fully supervised algorithms, to train them on 
simulation 

● However, a common problem that arises when applying ML algorithms on simulation is 
that the source domain is not fully representative of the target domain. 
○ Source domain: the dataset used to train the ML algorithm. 
○ Target domain: the dataset on which the ML algorithm is applied

● If the input features to the algorithm are not perfectly modeled by simulation, the output 
distributions may also be different between data and simulation. In a HEP analysis, these 
differences would typically be accounted for through a systematic uncertainty which 
covers the level of disagreement between data and simulation. 



Domain Adaptation in HEP
● The domain shift between the source domain and target domain refers to the problem of 

the training sample not being entirely representative of the sample where the algorithm 
will be applied

● Domain adaptation, thus refers to methods which attempt to build algorithms robust to 
the differences between the source and target domains.

● Solutions to domain shift:
○ Pre-training solutions 
○ Solutions applied during training 

● In this project, we are applying a solution during training by explicitly rewarding the 
DNN for minimizing differences between distributions in the source and target domains



Solutions During Training: Gradient Reversal Layers
● Solutions applied during training are less common in HEP, but have been successfully applied 

○ Gradient Reversal Layers have been included in training to minimize the DNN’s ability to 
distinguish between events from data and events from simulation. 

● Though applications of gradient reversal layers are not widespread, it has shown promise in the CMS 
search for LLPs 

○ Gradient reversal layers are associated with only a small decrease in the algorithm’s 
performance on the original task



Histogram Restricted Learning
● Though the gradient reversal layer has been found to improve agreement between the 

source and target domain, we attempted to implement a more direct solution to the issue 
of domain adaptation 

● Instead of implementing a gradient reversal layer during the training of the DNN, we 
included a term to the loss function known as a histogram loss component 

● We constructed histograms of the output distribution for both data and simulation and 
minimized bin-by-bin differences by adding a histogram loss component

● The histogram loss component explicitly rewards agreement in the output distribution 
between data and simulation.

● Instead of discouraging the DNN from learning features, as the gradient reversal layer 
does, our goal was to allow the DNN to distinguish between examples from the source and 
target domain 
○ The Histogram Loss Function minimizes differences in the output distributions



Histogram Loss Component
● We applied our Histogram Loss Component for a classification task which is trained on 

events having a label 0 or 1, and which gives a prediction for each event [0,1]
● We estimated the probability distribution functions for events from the source domain, 

denoted SS (label z = 0), and the target domain, denoted ST (label z = 1) through 
histograms HS and HT with N number of bins. 

● The bins are assumed to be uniformly spaced, such that the n-th bin of HT can be 
constructed as the equation below, where δi,n is a weight defined such that we linearly 
interpolate for each entry when constructing the histograms 



Histogram Loss Component Continued
● A loss function rewarding agreement between the probability distributions between data 

and simulation can be constructed as the sum of the squares of differences between each 
bin of HS and HT, as seen below

● A composite loss function which rewards performance on the original task as well as 
agreement between HS and HT takes the form below, where LC is a cross entropy loss 
function and lambda is a hyperparameter that dictates the balance between rewarding 
classification and rewarding data and simulation histogram agreement



Prompt and Fake Photon Classification
● We constructed a photon ID DNN with a simple set of features describing isolation and 

shower shape. The classification component is trained with prompt and fake photons from 
gamma burst jets simulation, while the histogram loss component takes electrons from 
data and simulation in a control region. 

● For the classification component of this project, I trained the DNN on a dataset of fake 
and prompt photons

● I calculated the DNN’s AUC score as the number of epochs increases, and the results are 
as we should expect:



Initial Results – Histogram Loss Component
● Our main goal for this project was to quantify the 

performance of the DNN with a histogram loss 
component

● We sought to quantify its performance in terms of the 
original task, which was found through the AUC score, 
and through the data/MC agreement

● For our initial DNN, we found that as we increased the 
value of lambda, which represents the strength at 
which I implement the histogram loss component, the 
agreement between the distributions of the source and 
target domain greatly increased, but the AUC score 
decreased greatly as well 



Final Results – Histogram Loss Component
● After updating the DNN, I recreated the previous 

plot and found a much more stable AUC score 
for increasing lambda values

● However, this new iteration of the DNN had less 
agreement between the source and target 
distributions for certain lambda values

● I wanted to explore the effects of changing the 
details of loss function, and the details of the 
DNN architecture and optimization on the 
DNN’s performance

● This was accomplished by changing the DNN’s 
lambda value, the learning learning rate, and the 
optimizer



Final Results Continued – Batch Sizes
Figure 1: Batch Size: 10^6

Figure 1: Batch Size: 10^6

Figure 2: Batch Size: 10^5

Figure 3: Batch Size: 10^4



Final Results Continued – Learning Rate

Figure 4: 
Learning Rate: 3*10^-4

Figure 5: 
Learning Rate: 3*10^-2



Final Results Continued – Optimizers
Figure 1: Batch Size: 10^6

Figure 6: Adadelta Optimizer

Figure 1: Adam Optimizer

Figure 1: Adamax Optimizer



Link to Github Repository

https://github.com/sam-may/HistogramRestrictedLearning 

https://github.com/sam-may/HistogramRestrictedLearning

