D. Schulte for the phase stabilisation team

CLIC meeting October 8, 2010

Main to Drive Beam Tolerance

- Integrated simulations have been performed with PLACET and GUINEA-PIG of main linac, BDS and beam-beam
 - system is assumed to be perfectly aligned (to determine BDS bandwidth effect)
 - assuming target emittance at BDS
- \bullet Resulting luminosity loss is about 2% for

$$\frac{\sigma_G}{G} \approx 1 \times 10^{-3}$$

and

$$\sigma_{\phi} \approx 0.3^{\circ}$$

$$\frac{\Delta \mathcal{L}}{\mathcal{L}} \approx 0.01 \left[\left(\frac{\sigma_{\phi,coh}}{0.2^{\circ}} \right)^2 + \left(\frac{\sigma_{\phi,inc}}{0.8^{\circ}} \right)^2 + \left(\frac{\sigma_{G,inc}}{0.75 \cdot 10^{-3} G} \right)^2 + \left(\frac{\sigma_{G,inc}}{2.2 \cdot 10^{-3} G} \right)^2 \right]$$

• Main beam current needs to be stable to $\approx 0.1 - 0.2\%$

D. Schulte, CLIC Meeting October 8, 2010 1

Emittance Growth

- To evaluate impact of RF error in misaligned machine assumed machine after ten days of ground motion and one-to-one alignment
 - \Rightarrow emittance is close to nominal
 - \Rightarrow pessimistic, no dispersion optimisation
 - almost no emittance growth directly after dispersion free steering or ballistic alignment
 - only main linac emittance growth is considered
- $\Delta \epsilon_y = 0.8 \, \mathrm{nm}$ corresponds to 2% luminosity loss
- \Rightarrow Resulting worst case luminosity loss from emittance growth is comparable to the one caused by limited BDS bandwidth

Drive Beam Tolerances

• We can re-write the tolerance for the RF amplitude and phase as tolerance for the drive beam phase, current and bunch length

$$\frac{\Delta \mathcal{L}}{\mathcal{L}} \approx 0.01 \left[\left(\frac{\sigma_{\phi,coh}}{0.2^{\circ}} \right)^2 + \left(\frac{\sigma_{\phi,inc}}{0.8^{\circ}} \right)^2 + \left(\frac{\sigma_{I,inc}}{0.75 \times 10^{-3}I} \right)^2 + \left(\frac{\sigma_{I,inc}}{2.2 \times 10^{-3}I} \right)^2 + \left(\frac{\sigma_{\sigma_z,coh}}{1.1 \times 10^{-2}\sigma_z} \right)^2 + \left(\frac{\sigma_{\sigma_z,inc}}{3.3 \times 10^{-2}\sigma_z} \right)^2 \right]$$

- We want to stabilise the parameters separately
 - drive beam phase
 - drive beam current
 - drive beam bunch length
- We could to some extend correct current and length errors with the phase, but
 - only limited correction range
 - correction system becomes complex
- But errors of one parameter can drive other errors
 - particularly current errors can lead to phase errors

Impact of Bunch Compressor

- The drive beam needs to be compressed longitudinally
 - \Rightarrow energy errors will translate into phase errors

 $\delta z = R_{56} \Delta E / E$

• For fully loaded operation

$$\frac{\delta E}{E_0} = \frac{2\delta G}{G_0} - \frac{\delta N}{N_0}$$

 \Rightarrow Can attempt to avoid compression

Example Tolerances, Full Compression at Final Turn-Around

- White noise type pulse-topulse jitter assumed
- Total compression after drive beam accelerator
 - for a large energy chirp of 0.6% per $\sigma_z = 3 \,\mathrm{mm}$ one requires $R_{56} \approx 0.5 \,\mathrm{m}$
 - \Rightarrow relative energy error toler- ance is 3×10^{-5}
 - \Rightarrow relative gradient tolerance is 1.5×10^{-5}
 - \Rightarrow relative charge tolerance is 3×10^{-5}
 - \Rightarrow phase tolerance is 0.02° at $1 \,\mathrm{GHz}$

- Looks very tough
 - \Rightarrow try to find ways to relax the tolerances

Main Beam as Phase Reference

External Phase Reference

Drive Beam Compression and Phase Stabilisation Concept

- Early compression allows large energy chirp \Rightarrow small $R_{56} \Rightarrow$ larger energy tolerance
- \Rightarrow Energy error tolerance: 1.5×10^{-4} , gradient tolerance 1.5×10^{-5} , current tolerance 3×10^{-5} , phase tolerance 0.02° at 1 GHz

Feedforward at Final Turn-Around

- Final feedforward shown
 - ultima ratio
 - measure phase
 - adjust BC chicane with kicker to compensate error
- Requires
 - timing reference (FP6)
 - phase measurement/prediction (FP7)
 - tuning chicane (FP6, Frank S.)
- Missing will be kicker and amplifier
 - but collaboration with Oxford envisaged

Capture Range of Feedforward

- We have modified our previous design
- Longitudinal shifts change final bunch length
- We require that RF amplitude error caused by longitudinal shift is below 0.1%
- $R_{56} \approx 0.2 \,\mathrm{m}$
- kicker strength is 350 mradian total kick
- Need to design kickers and amplifier
 - collaboration with Phil Burrows et al. and M. J. Barnes et al.

F. Stulle

Phase Tolerances before Feedforward

- Want to capture 4 times RMS tolerance before feedforward
 - \Rightarrow in 0.4% of the pulses cannot capture one drive beam fully (Gaussian jitter)
 - assume gain factor of 10
- Assume feedforward capture range is 10° ($\Delta z = 0.7 \,\mathrm{mm}$)
 - lattice is OK but kicker needs to be evaluated
 - \Rightarrow can allow 2.5° RMS jitter before feedback (4 σ capture)
 - assume gain factor of 10
 - $\Rightarrow 0.25^{\circ} \text{ RMS}$ jitter after feedforward
- Beam stability in current decelerator design requires less than 1% overcurrent
 - \Rightarrow require 0.1% RMS fluctuation per 10/2 bunches (one PETS fill time), or reoptimise decelerator
 - current stability from preliminary CTF3 measurement is 0.1%
 - static variations still need to be cured

Baseline Bunch Compressor System

• Early compression in drive beam accelerator $(3 \,\mathrm{mm} \rightarrow 1 \,\mathrm{mm})$

 \Rightarrow can use relatively large energy spread \Rightarrow small $R_{56} \Rightarrow$ large energy error tolerance

- Uncomression at end $(1 \text{ mm} \rightarrow 2 \text{ mm})$
 - to limit coherent snychrotron radiation in delay loop and combiner rings
- Recompression after rings $(2 \text{ mm} \rightarrow 1 \text{ mm})$
- Measure real phase at final phase feedforward
- Uncompress in turn-around
- Recompress before decelerator
 - used as correction chicane with small additional kicks
- To first order only RF errors at first compression are important
- assume (maybe optimistic) chirp of 2–3% per σ_z

 $\Rightarrow R_{56} = 67 - 120 \,\mathrm{mm}$

- \Rightarrow relative energy tolerance $1-2 \times 10^{-3} \Rightarrow$ relative gradient tolerance is $0.5-1 \times 10^{-3} \Rightarrow$ relative charge tolerance is $1-2 \times 10^{-3}$
- \Rightarrow phase tolerance is $\approx 0.2^\circ$ at $1\,\rm GHz$

Bunch Compressor System Design

RF Gradient Tolerances

- \Rightarrow The RF amplitude tolerance is given by the phase error of the bunches, the length variations are small
 - \bullet The amplitude tolerance of the effective gradient is 2×10^{-3}
 - \Rightarrow The tolerance is 0.1% for the accelerating power amplitude, i.e. 0.2% for the klystron power
 - \Rightarrow it is 0.2% for beam current
 - A. Aksoy

RF Phase Tolerances

 \Rightarrow The phase tolerance is given by the bunch length variation

- \bullet The phase tolerance for the effective gradient is 0.1°
 - \Rightarrow it is is 0.05° for klystron phase
 - \Rightarrow it is is 0.1° for the beam phase
 - A. Aksoy

Current Measurement in CTF3

- No dedicated stabilisation effort in CTF3
- \Rightarrow Current stability is close to needs for CLIC
- Dynamic charge variation from one pulse slcie to the next seems better than BPM resolution

G. Sterbini, S. Bettoni, et al.

D. Schulte, CLIC Meeting October 8, 2010 16

Results of Better Power Supply

- \Rightarrow Significant improvement in current stability
- \Rightarrow Slow variations have been reduced strongly
 - G. Sterbini, A. Andersson, S. Bettoni et al.

Results of Pulse-to-Pulse Feedback

- \Rightarrow Current stability is further improved
- \Rightarrow Pulse-to-pulse current stability is already good enough, but certainly further improvement is welcome
 - G. Sterbini, S. Bettoni et al.

Phase and Power Measurement in CTF3

- Measurements of phase and power of CTF3 klystron indicate
 - pulse-to-pulse average phase stability with respect to local reference phase 0.035°
 - for each 10 ns times slice the pusle to pulse jitter is 0.07° (plot shows case with 0.2°)
 - pulse-to-pulse power stability of < 0.2% \Rightarrow gradient stability $\le 0.1\%$
- \Rightarrow Corresponds to drive beam needs
- \Rightarrow Further improvements will reduce the importance of the hase feedback/feed-forward

A. Dubrovskiy

Drive Beam Turn-Around Jitter Tolerance

- Obviously magnet jitter tolerance should be relaxed if all magnets are on one power supply - isochronos arc
- Detailed study finds for 10^{-4} relative strength jitter
 - independent jitter of all magnet power supplies: RMS of $14\,\mu{\rm m}$
 - all magnets jitter coherently: RMS of $20\,\mathrm{nm}$
 - quadrupoles and dipoles each jitter coherently: RMS of $13\,\mathrm{nm}$
- \Rightarrow For reasonable cabling the tolerances are relaxed

F. Stulle

Transverse Drive Beam Jitter

Caluclation by E. Adli

- Longitidinal motion due to transverse angles
- Assumed that systematic effect is tuned out
- \Rightarrow Only jitter component left
 - Decelerator is most important (largest phase advance)
 - Need to average over local phase error to obtain effective phase error

$$\left(\frac{\Delta x}{\sigma_x}\right)^2 + \left(\frac{\Delta x'}{\sigma_{x'}}\right)^2 + \left(\frac{\Delta y}{\sigma_y}\right)^2 + \left(\frac{\Delta y'}{\sigma_{y'}}\right)^2 \le 1^2$$

Filtering and Intra-Pulse Feedback

- Long drive beam pulse at generation $\approx 140\,\mu s$
- End of pulse catches up with beginning due to combiner rings

- Also design of sequence of acceleration and bunch compression for drive beam can help to achieve required performance
 - but still need to beam able to measure final jitter

Impact of Combiner Ring and Delay Loop

- Simulation of transfer through delay loop and combiner rings
- Simple estimate for white noise

$$\sigma_{ML} = \sqrt{\frac{1}{N_{fill}}} \sigma_{DB-bunch}$$

- 2×10^{-3} per 10 ns initial drive beam pulse will become \approx 4×10^{-4} per 10 ns final drive beam pulse
- \Rightarrow Most frequencies are filtered
- \Rightarrow Mainly harmonics of 4 MHzare still important
 - corresponds to train length
 - Note reduction to 0.7 in harmonic peaks because we use RMS of all timeslices

A. Gerbershagen

Impact of Drive Beam Accelerating Structure Fill Time

- We purposefully have chosen the drive beam accelerator structure fill time to be one train length
 - external RF effect will average out over one structure length
 - simplfied rectangular response used for now
 - waiting for input
- Reduction of an imperfection as a function of the frequency
 - upper plot RF error (phase or amplitude)
 - lower plot bunch charge (into energy error)

Combined Effect

- The impact of the chosen fill time plus combiner rings
- Reduction of an imperfection as a function of the frequency
 - upper plot RF error (phase or amplitude)
 - lower plot bunch charge (into energy error)
- \Rightarrow The choice of fill time significantly reduce RF error impact
- \Rightarrow Beam current error impact is not reduced as much
- \Rightarrow Main concern remain the low frequency components
 - Will use feedback for them

A. Gerbershagen D. Schulte, CLIC Meeting October 8, 2010 25

Final Turn-Around Feed-Forward

- Feed-forward at final turnaround integrated with RF errors
 - correcting the mean offset of the train
 - correcting the mean of each $20 \, \mathrm{ns}$ time bin
- \Rightarrow If we can only correct average value, we can only cure low frequency noise
- \Rightarrow Need a large bandwidth at final turn-around

A. Gerbershagen

Main Beam to Main Beam Phase Tolerance

• Shift of collision point with respect to waist

Main Beam Phasing

- In central complex external timing reference assumed
- Along the main linac
 - distributed timing system
 - use of main beam as timing reference

Resulting Longitudinal IP Jitter

- If the main beam serves as a timing reference we find
 - Beam-beam phase jitter at the interaction point

$$\sigma_{IP} \approx \sqrt{\frac{1}{2}} \left(\frac{6}{7} \sigma_{MB \to RF} \oplus \sigma_{MB} \right)$$

 σ_{MB} : Timing error of outgoing main beam

 $\sigma_{MB \rightarrow RF}$: Error of picking up phase of outgoing main beam and turning this into BC2 RF phase

Note: the factor 6/7 is due to the second bunch compressor

 \Rightarrow Relative rhase error of the two outgoing main beams needs to be $\leq 42\,\mu{\rm m}$

• If we use the X-FEL system as timing reference we find

$$\sigma_{IP} \approx \sqrt{\frac{1}{2} \left(\frac{1}{7} \sigma_{MB} \oplus \frac{6}{7} \left[\sigma_{ref} \oplus \sigma_{ref \to RF} \right] \right)}$$

 σ_{ref} : Timing error of reference timing at final turn-around with respect to central clock $\sigma_{ref \rightarrow RF}$: Error of picking up phase of external reference and turning this into BC2 RF phase

- \Rightarrow Relative rhase error of the references at final turn-around needs to be $\leq 42\,\mu{\rm m}$
- Energy error also leads to main beam phase jitter

Main to Drive Beam Phase Errors

- If the main beam serves as a timing reference we find
 - Main beam vs. drive beam phase jitter in main linac

$$\sigma_{MD} \approx (\sigma_{MB \to RF} \oplus 0 \times \sigma_{MB}) \oplus (\sigma_{MB \to ref} \oplus \sigma_{DB \to corr} \oplus a\sigma_{DB})$$

- If we use the X-FEL system as timing reference we find
 - Main beam vs. drive beam phase jitter in main linac

$$\sigma_{MD} \approx \left(\frac{1}{7}\sigma_{MB} \oplus \frac{6}{7}\left[\sigma_{ref} \oplus \sigma_{ref \to RF}\right]\right) \oplus \left(\sigma_{ref} \oplus \sigma_{DB \to corr} \oplus a\sigma_{DB}\right)$$

or roughly

$$\sigma_{MD} \approx \sigma_{ref \to RF} \oplus \sqrt{2}\sigma_{ref} \oplus \sigma_{DB \to corr} \oplus a\sigma_{DB} \oplus \frac{1}{7}\sigma_{MB}$$

Local Error Model

• Phase error at each point is independent of each other point

Simple Calculation for Local Control Error

- Let us assume that all errors are local
 - main beams have no phase jitter when going into transfer line
 - external timing system has the right signal in the fibers everywhere
- Local timing errors will occur due to
 - picking up the signal from the main beam
 - or picking up the signal from the fibers
 - error in controling the main beam bunch compressor RF
 - or error in controling the drive beam feed-forward
- \Rightarrow In this case tightest tolerance comes from main beam error
 - $14 \,\mu m = 0.2^{\circ}$ lead to 1% luminosity loss due to incorrect main beam energy
 - tolerance on main to incoherent drive beam phase is more relaxed (0.8°)

Global Error Models

• Timing error exists between each pair of points

- Timing of main beam is wrong with respect to reference time
- Timing of drive beam feedforward is correct for main beam

Simple Calculation for Global Control Error

- The only error considered is
 - a phase jitter of the outgoing beam
 - or a random walk-like error of the external timing
- \Rightarrow The jitter of the outgoing main beam can be $0.4^\circ = 30 \,\mu m$, limited by IP jitter
 - The total difference between the two ends of the BC timing references is $\sigma \approx \sqrt{50}\sigma_{\phi}$, σ_{ϕ} the RMS drift from one sector to the next
- $\Rightarrow \sigma_{\phi} \approx 4 \, \mu m \approx 0.05^{\circ}$ from IP jitter tolerance
 - On top will have phase errors between main and drive beam sectors, roughly doubling the luminosity loss
- $\Rightarrow \sigma_{\phi} \approx 3 \,\mu\mathrm{m} \approx 0.03^{\circ}$
 - at DESY $\sigma_{\phi} \approx 3 \,\mu m$ has been achieved over $300 \,m$, not far

RTML Sensitivity

- No active compensation assumed, each value results in $\Delta \mathcal{L}/\mathcal{L} = 0.01$ or an energy jitter of 0.2% at linac energy (external timing)
- Note: the tolerances will be tighter
- Energy jitter from damping ring:
 - 2×10^{-4} for main beam as timing reference
 - 4×10^{-4} for external timing reference
- Phase jitter from damping ring:
 - 0.2° at $1\,\mathrm{GHz}$ for main beam as timing reference
 - 0.35° for external timing reference
- Phase error of first bunch compressor (BC1) at 4 GHz:
 - 0.08° for main beam as timing reference
 - 0.14° for X-FEL scheme
- Gradient error in booster linac (without energy feedforward):
 - -1×10^{-3}
 - energy feedforward would measure energy at turn-around and change BC2 RF phase
- BC2 phase jitter tolerance:
 - 0.2° at $12\,GHz$

RTML Sensitivity Improvements

- Coupling of RF for both main beams would help
 - but currently different time slices are used
- Phase errors from the damping rings could be cured in BC1 with Feed-fowrad
- For the beam-based timing system a waist feed-forward could further relax the tolerances
 - we could measure the relative phase errors of the outgoing main beams
 - we could move the waist longitudinally with a feed-forward system
 - either fast quadrupoles
 - or kick the beams in sextupoles
 - or accelerate/decelerate beam just before the final doublet, where the chromaticity is uncorrected
 - details need to be worked out

Feedback and Tuning Strategy

- Feedback to deal with slow variations
- Tuning to deal with static or slow imperfections
- Need a path length tuning system for each turn-around
 - in drive beam and main beam
- Need an adjustment of path length from one drive beam turn-around to the next
- Similarly for the combiner rings, the delay loop and the drive beam accelerator complex
- \Rightarrow Slow drifts of relative phasing of the beams do not appear to be an feasibility issue

Feedforward and Feedback Layout

Some Other Issues

- Performance of hardware, in particular distributed timing
- Drive beam source design
 - and stability
- Damping ring phase, energy and charge stability
 - phase could be cured in BC1
 - tight requirements for sources, waiting for feedback from working group
- Relative phasing of the drive beam to the RF is an issue
 - stabilised by stabilising temperature etc.
 - e.g. RF network requires $0.2 \,\mathrm{K}$ stability (Walter, Module WG)
 - other options exist, e.g. measuring the phases

Further Work

- Integration of injectors and damping rings
 - for the injectors already bunch-to-bunch charge variation of 1% is required (0.1% for main linac accelerating structure fill time
- Study of BDS improvements, in particular the waist shift options
- Exploration of other potential phase stability issues
- Tracking of bunches through relevant systems to verify performance
- Simplified model of error propagation to achieve specifications
 - correlations between errors
- Slow feedback estimates

Conclusion

- We have two options to provided a distributed phase reference system in the main linac
 - use the outgoing main beam
 - X-FEL-like system
 - or a combination
- Decision needs to be based on further input from hardware performance
 - both seem to not be too far
- We seem to have a concept for drive beam generation and transport complex that leads to acceptable tolerances
 - demonstration of hardware
 - \Rightarrow close to becoming a performance and cost issue
 - ready for improvements (cost, performance)
 - e.g. one central feedforward
- The effective loop and transfer line lengths are measured and can be corrected with feedback
- We need to look further into effects within the drive beam accelerator pulse
- More work to be done

Experiments in CTF3

