
Consideration on the Conceptual Phase Stabilisation System

D. Schulte for the phase stabilisation team

CLIC meeting October 8, 2010



Main to Drive Beam Tolerance

• Integrated simulations have been performed
with PLACET and GUINEA-PIG of main linac,
BDS and beam-beam

- system is assumed to be perfectly aligned
(to determine BDS bandwidth effect)

- assuming target emittance at BDS

• Resulting luminosity loss is about 2% for
σG

G
≈ 1 × 10−3

and
σφ ≈ 0.3◦
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• Main beam current needs to be stable to ≈ 0.1–
0.2%
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Emittance Growth

• To evaluate impact of RF error in misaligned
machine assumed machine after ten days of
ground motion and one-to-one alignment

⇒ emittance is close to nominal

⇒ pessimistic, no dispersion optimisation

- almost no emittance growth directly after
dispersion free steering or ballistic alignment

- only main linac emittance growth is consid-
ered

• ∆εy = 0.8 nm corresponds to 2% luminosity
loss

⇒ Resulting worst case luminosity loss from emit-
tance growth is comparable to the one caused
by limited BDS bandwidth
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Drive Beam Tolerances

• We can re-write the tolerance for the RF amplitude and phase as tolerance for the drive
beam phase, current and bunch length
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• We want to stabilise the parameters separately

- drive beam phase

- drive beam current

- drive beam bunch length

• We could to some extend correct current and length errors with the phase, but

- only limited correction range

- correction system becomes complex

• But errors of one parameter can drive other errors

- particularly current errors can lead to phase errors
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Impact of Bunch Compressor

• The drive beam needs to be compressed longi-
tudinally

⇒ energy errors will translate into phase errors

δz = R56∆E/E

• For fully loaded operation

δE

E0
=

2δG

G0
− δN

N0

⇒ Can attempt to avoid compression
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Example Tolerances, Full Compression at Final Turn-Around

• White noise type pulse-to-
pulse jitter assumed

• Total compression after drive
beam accelerator

- for a large energy chirp of
0.6% per σz = 3 mm one
requires R56 ≈ 0.5 m

⇒ relative energy error toler-
ance is 3 × 10−5

⇒ relative gradient tolerance
is 1.5 × 10−5

⇒ relative charge tolerance is
3 × 10−5

⇒ phase tolerance is 0.02◦ at
1 GHz

• Looks very tough

⇒ try to find ways to relax the tolerances
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Main Beam as Phase Reference
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External Phase Reference
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Drive Beam Compression and Phase Stabilisation Concept

• Early compression allows large energy chirp ⇒ small R56 ⇒ larger energy tolerance

⇒ Energy error tolerance: 1.5×10−4, gradient tolerance 1.5×10−5, current tolerance 3×10−5,
phase tolerance 0.02◦ at 1 GHz
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Feedforward at Final Turn-Around

• Final feedforward shown

- ultima ratio

- measure phase

- adjust BC chicane with
kicker to compensate error

• Requires

- timing reference (FP6)

- phase measure-
ment/prediction (FP7)

- tuning chicane (FP6,
Frank S.)

• Missing will be kicker and am-
plifier

- but collaboration with Ox-
ford envisaged
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Capture Range of Feedforward

• We have modified our previous
design

• Longitudinal shifts change fi-
nal bunch length

• We require that RF amplitude
error caused by longitudinal
shift is below 0.1%

• R56 ≈ 0.2 m

• kicker strength is 350 mradian
total kick

• Need to design kickers and
amplifier

- collaboration with Phil
Burrows et al. and M. J.
Barnes et al.
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Phase Tolerances before Feedforward

• Want to capture 4 times RMS tolerance before feedforward

⇒ in 0.4% of the pulses cannot capture one drive beam fully (Gaussian jitter)

- assume gain factor of 10

• Assume feedforward capture range is 10◦ (∆z = 0.7 mm)

- lattice is OK but kicker needs to be evaluated

⇒ can allow 2.5◦ RMS jitter before feedback (4σ capture)

- assume gain factor of 10

⇒ 0.25◦ RMS jitter after feedforward

• Beam stability in current decelerator design requires less than 1% overcurrent

⇒ require 0.1% RMS fluctuation per 10/2 bunches (one PETS fill time), or reoptimise
decelerator

- current stability from preliminary CTF3 measurement is 0.1%

- static variations still need to be cured
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Baseline Bunch Compressor System

• Early compression in drive beam accelerator (3 mm → 1 mm)

⇒ can use relatively large energy spread ⇒ small R56 ⇒ large energy error tolerance

• Uncomression at end (1 mm → 2 mm)

- to limit coherent snychrotron radiation in delay loop and combiner rings

• Recompression after rings (2 mm → 1 mm)

• Measure real phase at final phase feedforward

• Uncompress in turn-around

• Recompress before decelerator

- used as correction chicane with small additional kicks

• To first order only RF errors at first compression are important

• assume (maybe optimistic) chirp of 2–3% per σz

⇒ R56 = 67–120 mm

⇒ relative energy tolerance 1–2 × 10−3 ⇒ relative gradient tolerance is 0.5–1 × 10−3 ⇒
relative charge tolerance is 1–2 × 10−3

⇒ phase tolerance is ≈ 0.2◦ at 1 GHz
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Bunch Compressor System Design

A. Aksoy
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RF Gradient Tolerances

⇒ The RF amplitude tolerance is given by the phase error of the bunches, the length variations
are small

• The amplitude tolerance of the effective gradient is 2 × 10−3

⇒ The tolerance is 0.1% for the accelerating power amplitude, i.e. 0.2% for the klystron
power

⇒ it is 0.2% for beam current

A. Aksoy
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RF Phase Tolerances

⇒ The phase tolerance is given by the bunch length variation

• The phase tolerance for the effective gradient is 0.1◦

⇒ it is is 0.05◦ for klystron phase

⇒ it is is 0.1◦ for the beam phase

A. Aksoy
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Current Measurement in CTF3
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• No dedicated stabilisation effort in CTF3

⇒ Current stability is close to needs for CLIC

• Dynamic charge variation from one pulse slcie
to the next seems better than BPM resolution

G. Sterbini, S. Bettoni, et al.
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Results of Better Power Supply
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⇒ Significant improvement in current stability

⇒ Slow variations have been reduced strongly

G. Sterbini, A. Andersson, S. Bettoni et al.
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Results of Pulse-to-Pulse Feedback
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⇒ Current stability is further improved

⇒ Pulse-to-pulse current stability is already good enough, but certainly further improvement is
welcome

G. Sterbini, S. Bettoni et al.
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Phase and Power Measurement in CTF3

• Measurements of phase and power of CTF3
klystron indicate

- pulse-to-pulse average phase stability with
respect to local reference phase 0.035◦

- for each 10 ns times slice the pusle to pulse
jitter is 0.07◦ (plot shows case with 0.2◦)

- pulse-to-pulse power stability of < 0.2%

⇒ gradient stability ≤ 0.1%

⇒ Corresponds to drive beam needs

⇒ Further improvements will reduce the impor-
tance of the hase feedback/feed-forward

A. Dubrovskiy
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Drive Beam Turn-Around Jitter Tolerance

• Obviously magnet jitter tolerance should be relaxed if all magnets are on one power supply

- isochronos arc

• Detailed study finds for 10−4 relative strength jitter

- independent jitter of all magnet power supplies: RMS of 14 µm

- all magnets jitter coherently: RMS of 20 nm

- quadrupoles and dipoles each jitter coherently: RMS of 13 nm

⇒ For reasonable cabling the tolerances are relaxed

F. Stulle
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Transverse Drive Beam Jitter
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• Longitidinal motion due to transverse angles

• Assumed that systematic effect is tuned out

⇒ Only jitter component left

• Decelerator is most important (largest phase advance)

• Need to average over local phase error to obtain effective phase error
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Filtering and Intra-Pulse Feedback

• Long drive beam pulse at generation ≈ 140 µs

• End of pulse catches up with beginning due to combiner rings

• Also design of sequence of acceleration and bunch compression for drive beam can help to
achieve required performance

- but still need to beam able to measure final jitter
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Impact of Combiner Ring and Delay Loop

• Simulation of transfer through
delay loop and combiner rings

• Simple estimate for white
noise

σML =

√√√√√√
1

Nfill
σDB−bunch

• 2× 10−3 per 10 ns initial drive
beam pulse will become ≈
4 × 10−4 per 10 ns final drive
beam pulse

⇒ Most frequencies are filtered

⇒ Mainly harmonics of 4 MHz
are still important

- corresponds to train length

• Note reduction to 0.7 in har-
monic peaks because we use
RMS of all timeslices

A. Gerbershagen
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Impact of Drive Beam Accelerating Structure Fill Time

• We purposefully have chosen the drive beam
accelerator structure fill time to be one train
length

- external RF effect will average out over one
structure length

- simplfied rectangular response used for now

- waiting for input

• Reduction of an imperfection as a function of
the frequency

- upper plot RF error (phase or amplitude)

- lower plot bunch charge (into energy error)
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Combined Effect

• The impact of the chosen fill time plus combiner
rings

• Reduction of an imperfection as a function of
the frequency

- upper plot RF error (phase or amplitude)

- lower plot bunch charge (into energy error)

⇒ The choice of fill time significantly reduce RF
error impact

⇒ Beam current error impact is not reduced as
much

⇒ Main concern remain the low frequency com-
ponents

• Will use feedback for them
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Final Turn-Around Feed-Forward

• Feed-forward at final
turnaround integrated with
RF errors

- correcting the mean offset
of the train

- correcting the mean of
each 20 ns time bin

⇒ If we can only correct average
value, we can only cure low
frequency noise

⇒ Need a large bandwidth at fi-
nal turn-around

A. Gerbershagen
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Main Beam to Main Beam Phase Tolerance

• RMS collision timing shift

1% loss for shift of 21 µm

∆L0.01
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≈ 0.01
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Main Beam Phasing

• In central complex external timing reference assumed

• Along the main linac

- distributed timing system

- use of main beam as timing reference
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Resulting Longitudinal IP Jitter

• If the main beam serves as a timing reference we find

- Beam-beam phase jitter at the interaction point

σIP ≈
√√√√√

1

2
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σMB: Timing error of outgoing main beam

σMB→RF : Error of picking up phase of outgoing main beam and turning this into BC2
RF phase

Note: the factor 6/7 is due to the second bunch compressor

⇒ Relative rhase error of the two outgoing main beams needs to be ≤ 42 µm

• If we use the X-FEL system as timing reference we find

σIP ≈
√√√√√

1

2
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7
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σref : Timing error of reference timing at final turn-around with respect to central clock

σref→RF : Error of picking up phase of external reference and turning this into BC2 RF
phase

⇒ Relative rhase error of the references at final turn-around needs to be ≤ 42 µm

• Energy error also leads to main beam phase jitter
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Main to Drive Beam Phase Errors

• If the main beam serves as a timing reference we find

- Main beam vs. drive beam phase jitter in main linac

σMD ≈ (σMB→RF ⊕ 0 × σMB) ⊕ (σMB→ref ⊕ σDB→corr ⊕ aσDB)

• If we use the X-FEL system as timing reference we find

- Main beam vs. drive beam phase jitter in main linac

σMD ≈
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7
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 ⊕ (σref ⊕ σDB→corr ⊕ aσDB)

or roughly
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7
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Local Error Model

" " " " " "

"

• Phase error at each point is independent of each other point
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Simple Calculation for Local Control Error

• Let us assume that all errors are local

- main beams have no phase jitter when going into transfer line

- external timing system has the right signal in the fibers everywhere

• Local timing errors will occur due to

- picking up the signal from the main beam

- or picking up the signal from the fibers

- error in controling the main beam bunch compressor RF

- or error in controling the drive beam feed-forward

⇒ In this case tightest tolerance comes from main beam error

- 14 µm = 0.2◦ lead to 1% luminosity loss due to incorrect main beam energy

- tolerance on main to incoherent drive beam phase is more relaxed (0.8◦)
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Global Error Models

" " " " " "

• Timing error exists between each pair of points

"

• Timing of main beam is wrong with respect to reference time

• Timing of drive beam feedforward is correct for main beam
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Simple Calculation for Global Control Error

• The only error considered is

- a phase jitter of the outgoing beam

- or a random walk-like error of the external timing

⇒ The jitter of the outgoing main beam can be 0.4◦ = 30 µm, limited by IP jitter

• The total difference between the two ends of the BC timing references is σ ≈
√

50σφ, σφ
the RMS drift from one sector to the next

⇒ σφ ≈ 4 µm ≈ 0.05◦ from IP jitter tolerance

• On top will have phase errors between main and drive beam sectors, roughly doubling the
luminosity loss

⇒ σφ ≈ 3 µm ≈ 0.03◦

• at DESY σφ ≈ 3 µm has been achieved over 300 m, not far
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RTML Sensitivity

• No active compensation assumed, each value results in ∆L/L = 0.01 or an energy jitter of
0.2 % at linac enetrance (external timing)

• Note: the tolerances will be tighter

• Energy jitter from damping ring:

- 2 × 10−4 for main beam as timing reference

- 4 × 10−4 for external timing reference

• Phase jitter from damping ring:

- 0.2◦ at 1 GHz for main beam as timing reference

- 0.35◦ for external timing reference

• Phase error of first bunch compressor (BC1) at 4 GHz:

- 0.08◦ for main beam as timing reference

- 0.14◦ for X-FEL scheme

• Gradient error in booster linac (without energy feedforward):

- 1 × 10−3

- energy feedforward would measure energy at turn-around and change BC2 RF phase

• BC2 phase jitter tolerance:

- 0.2◦ at 12 GHz
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RTML Sensitivity Improvements

• Coupling of RF for both main beams would help

- but currently different time slices are used

• Phase errors from the damping rings could be cured in BC1 with Feed-fowrad

• For the beam-based timing system a waist feed-forward could further relax the tolerances

- we could measure the relative phase errors of the outgoing main beams

- we could move the waist longitudinally with a feed-forward system

• either fast quadrupoles

• or kick the beams in sextupoles

• or accelerate/decelerate beam just before the final doublet, where the chromaticity is
uncorrected

• details need to be worked out
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Feedback and Tuning Strategy

• Feedback to deal with slow variations

• Tuning to deal with static or slow imperfections

• Need a path length tuning system for each turn-around

- in drive beam and main beam

• Need an adjustment of path length from one drive beam turn-around to the next

• Similarly for the combiner rings, the delay loop and the drive beam accelerator complex

⇒ Slow drifts of relative phasing of the beams do not appear to be an feasibility issue
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Feedforward and Feedback Layout
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Some Other Issues

• Performance of hardware, in particular distributed timing

• Drive beam source design

- and stability

• Damping ring phase, energy and charge stability

- phase could be cured in BC1

- tight requirements for sources, waiting for feedback from working group

• Relative phasing of the drive beam to the RF is an issue

- stabilised by stabilising temperature etc.

- e.g. RF network requires 0.2 K stability (Walter, Module WG)

- other options exist, e.g. measuring the phases
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Further Work

• Integration of injectors and damping rings

- for the injectors already bunch-to-bunch charge variation of 1% is required (0.1% for main
linac accelerating structure fill time

• Study of BDS improvements, in particular the waist shift options

• Exploration of other potential phase stability issues

• Tracking of bunches through relevant systems to verify performance

• Simplified model of error propagation to achieve specifications

- correlations between errors

• Slow feedback estimates
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Conclusion

• We have two options to provided a distributed phase reference system in the main linac

- use the outgoing main beam

- X-FEL-like system

- or a combination

• Decision needs to be based on further input from hardware performance

- both seem to not be too far

• We seem to have a concept for drive beam generation and transport complex that leads to
acceptable tolerances

- demonstration of hardware

⇒ close to becoming a performance and cost issue

- ready for improvements (cost, performance)

- e.g. one central feedforward

• The effective loop and transfer line lengths are measured and can be corrected with feedback

• We need to look further into effects within the drive beam accelerator pulse

• More work to be done
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Experiments in CTF3
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