CMS Upgrade Technical Proposal LHCC 103

1

J. Nash, Imperial College London

Outline

- Overview of upgrade plans
- Muon upgrades
- Hadronic Calorimeter Upgrades
- Pixel Tracker Upgrades
- Other Upgrades and plans for document submission

CERN has announced the plan for shutdowns over the next 10 years

The 10 year technical Plan

This plan is very consistent with what CMS had been planning for upgrades

MS Upgrades TP 21 September 2010

3

Progression in luminosity

Y	ear	TeV	OEF	β*	Nb	lb	ltot	MJ	Peak	Pile up	pb-1/day	Physics	Integrated	Total Int	
									luminosity			Days	(ID-I/year)	(1-01)	
2	010	3.50	0.20	2.00	796	8.0E+10	6.4E+13	36.0	1.886E+32	1.2643	3.3	20.0	0.1	0.07	
2	011	3.50	0.25	2.00	796	8.0E+10	6.4E+13	36.0	1.886E+32	1.2643	4.1	240.0	0.98	1.04	
2	012												0.0	1.0	
2	013	6.50	0.20	0.55	796	1.15E+11	9.2E+13	96.1	2.632E+33	17.6429	45.5	180.0	8.2	9.2	
2	014	7.00	0.20	0.55	1404	1.15E+11	1.6E+14	182.5	5.000E+33	19.0000	86.4	240.0	20.7	30.0	
2	015	7.00	0.20	0.55	2808	1.15E+11	3.2E+14	365.0	1.000E+34	19.0000	172.8	210.0	36.3	66.3	
2	016											0.0	0.0	66.3	
2	017	7.00	0.25	0.55	2808	1.15E+11	3.2E+14	365.0	1.000E+34	19.0000	216.0	240.0	51.8	118.1	
2	018	7.00	0.28	0.55	2808	1.50E+11	4.2E+14	476.1	1.701E+34	32.3251	411.6	240.0	98.8	216.9	
2	019	7.00	0.30	0.55	2808	1.70E+11	4.8E+14	539.6	2.185E+34	41.5198	566.4	210.0	118.9	335.8	
2	020											0.0	0.0	335.8	
2	021	7.00	0.20	0.30	2808	1.70E+11	4.8E+14	539.6	4.006E+34	76.1197	692.3	150.0	103.8	439.7	
2	022	7.00	0.27	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1257.3	220.0	276.6	716.3	
2	023	7.00	0.27	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1257.3	220.0	276.6	992.9	
2	024	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1290.0	
2	025	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1587.1	
2	026	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	1884.2	
2	027	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	2181.3	
2	028	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	2478.4	
2	029	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	2775.5	
2	030	7.00	0.29	0.25	2808	1.80E+11	5.1E+14	571.3	5.390E+34	102.4060	1350.5	220.0	297.1	3072.6	
														13	

J. Nash CMS Upgrades TP 21 September 2010

Requirements for the phases of the upgrades: ~2010-2020

- This decade will see the initial operation of the LHC and the increase of energy and luminosity towards the design luminosities.
- Goal of extended running in the second half of the decade to collect ~100s/fb
 - > 80% of this luminosity in the last three years of this decade
 - About half the luminosity would be delivered at luminosities above the original LHC design luminosity
- Motivation for upgrades during this phase
 - may be based on required performance for higher luminosity, better physics performance, better reliability of operation

2020-2030 – High Lumi LHC

- Continued operation of the LHC beyond a few 100/fb will require substantial modification of detector elements
- The goal is to achieve 3000/fb in phase 2
- Need to be able to integrate ~300/fb-yr
- Will require new tracking detectors for CMS
- Still substantial R/D required for the detectors to be able to operate at these higher luminosities
 - A preview of this R&D is included as an appendix to the upgrade Technical Proposal

Agreed at the May 2008 Upgrades Workshop http://indico.cern.ch/conferenceDisplay.py?confld=28746

CMS Upgrade Scope

2012 2016

2012 /2016 2016

9

What is required of new detectors for operation up until 2020?

- They should be able to operate with a peak luminosity of up to 2 x 10³⁴
- They should be able to cope with an integrated luminosity of up to as much as 700/fb
 - Looking at potential increase in luminosity, this now not an issue until late in the decade.
 - Be able to cope with whatever scenario develops before the long shutdown to replace triplets/tracking detectors
- They should offer increased physics performance

2012: Muons

- CMS design has space for a fourth layer of forward muon chambers – both Cathode Strip Chambers and RPCs
 - They give much better trigger robustness – especially at higher luminosities
 - A fourth layer of shielding is also for-seen (YE4)
- These are built to the same design as those already installed
- Technically ready to produce chambers
 - Funding is the main reason the chambers are not yet produced
- Imminent Steps
 - bat 904 has been prepared for CSC Production

Phase 1 : Muons ME4/2 upgrade motivation

5 chambers already installed

- Compare 3/4 vs. 2/3 stations:
 - (Triggering on n out of n stations is inefficient and uncertain)
- Recent simulation with & without the ME4/2 upgrade:
 - The high-luminosity Level I trigger threshold is reduced from 48 → 18 GeV/c

CSC Factory Production Site at CERN

Floor plan layout at Bldg 904 (Draft)

RPC: The RE4/2

- RPC trigger requires three out of three station coincidence
 - With two points, the rate is just too high due to noise and random coincidences
- Leads to a substantial inefficiency of the RPC trigger
 - Better efficiency requires extra redundancy, i.e. station RE4

CSC: The ME4/2

- At higher luminosity, trigger rate becomes large and flat
 - Caused by mismeasured soft muons
- The reason is that the trigger requires a two station coincidence
 - Not enough to control soft muon mismeasurements
- Cant require three station as efficiency losses are too large due to lack of redundancy
 - Not all backgrounds included, e.g. no beam backgrounds
 Real life efficiencies can be a set of the set of t
 - Real life efficiencies are always even worse, e.g. dead chamber electronics
- ME4/2 has critical importance for Global Muon Trigger performance

Upgrades to DT electronics

- On Detector BTIM ASICs have been failing
- Limited spares available process no longer available
- Move some electronics to FPGA to create spares
- Move some electronics out of the UXC to the USC
 - Transmit data by optical fibre from UXC to USC
 - More robust, easier access to make repais

New photo-detectors for Hadronic Calorimeter

fired

pixels

Number of

- Array of avalanche photo diodes ("digital" photon detection)
 - Array can be 0.5x0.5 up to 5.0x5.0 mm²
 - Pixel size can be 10 up to 100μ
- All APDs connect to a single output
 - Signal = sum of all cells
- Advantages over HPDs:
 - 28% QE (x2 higher) and 10⁶ gain (x500 higher)
 - More light (40 pe/GeV), less photostatistics broadening
 - Very high gain can be used to give timing shaping/filtering

SiPMs already being installed in the HO

Figure 10a: Individual energy distribution, mwgr18, for a single HO channel, HO(ieta=12, iphi=60). Here energy E_u is not corrected for muon angle of incidence.

Figure 10b: For comparison, individual energy distribution, single HO channel read out with HPD, TB2007 data. Blue line: pedestal events, red line: muon signal.

- HPDs show increased noise in the magnetic field region where HO is operated
 - They show this effect much less at full field or at 0 field
- Decided to replace the HPDs in HO with SiPM
 - Have already installed some modules
- SiPM Signal/Noise is a factor of 10 better than with the HPDs currently on the detector

HO SiPMS

Plug in replacement for HPD

New Photodetectors allow finer segmentation of readout in depth

New segmentation – more robust against damage to inner scintillator layers

Segmentation – Electron isolation

J. Nash CMS Upgrades TP 21 September 2010

Segmentation

SiPMs in the Barrel HCAL

One SiPM per fibre

Plug compatible with current optics

New HCAL Back end electronics under development

Upgrades to the HF phototubes

- Large signals are created in the phototubes by particles passing through either the phototube window (red) or fibre bundles (green)
- Replace phototubes with new PMT
 - Thinner front window reduce cerenkov light
 - Four way segmented anodes to reject PMT events by energy deposition pattern

New 4 anode phototube allows fake signal rejection

2nd Shutdown: Pixels

- Well developed plan for a new 4 Barrel layer, 3 end disk low mass pixel detector
 - Fall forward scenario gives a way to proceed at full speed with the current mature design while giving aggressive options
- Issues for Pixel replacement
 - Radiation hardness, reparability of the inner layer(s)
 - Buffer sizes (data loss at higher luminosities)
 - Including the case where we achieve luminosity using 50ns bunch spacing – giving higher number of interactions/bunch
 - B tagging capabilities

New Pixel detector overview

Main features of the new detector:

- 4 barrel layers and 3 endcap disks at each side
- New readout chip with expanded buffers, embedded digitization and high speed data link
- CO₂ two-phases cooling and displaced optical transceivers
- Powering based on DC-DC converters

New Barrel Pixel design

- Innermost layer with reduced radius (39mm)
- Additional outermost layer at 160mm
- ~2x radial acceptance
- ~65% more pixels
- Only one module type

Endcap Disk design

- FPIX half disks divided in inner and outer rings for easier replacement
- Smaller pitch oriented along phi
- 8x2 ROC modules as for the barrel
- 18M -> 45M pixel

Current Pixel System with Supply Tubes / Cylinders

DOH & AOH mother board endflange prints + AOH's **10mm** Layer 3 & 1+2 Power board 15mm BPIX supply ube 20 FPIX service cylinder 10 -0 20 40 60 80 100

BPIX & Supply Tube with AOH, DOH, PCBs & Fibres

Pixel Material budget improvement

Overview of 2015 4 Layer BPIX System

1 Layer of new Ultra Light Mechnaics

• CO_2 cooling circuit (50µm wall thickness tubes) pressure tested to 100 bar

New BPIX Supply Tube

Note: Some minor carbon fiber parts not yet glued.

CO2 cooling loops are to be inserted

36

Vertex resolution

- Vertexing tested both with zero and 25 pileup events with ttbar signal
- 20% resolution improvement along both coordinates
- Will help resolving multiple interactions and improve lifetime measurements (e.g. bfractions, etc.)

Improved impact parameter resolution

Improved B tagging

Fall-forward possible improvements

- Smaller pixels with lower readout thresholds can better preserve position resolution after irradiation
- Improve impact parameter resolution
- Add resolving power for high pt jets and boosted objects (b, tau, top)
- Better vertex resolution in a high pile-up environment and improved lifetime measurements

- Replacement of layer 1 opens door for attractive opportunities
 - New chip based on 130nm or smaller CMOS technology
 - Can implement smaller pixel cells
 - Aim at lower readout threshold

Longitudinal IP resolution

Pixel detector schedule

Pixel Upgrade V. 2.0		2010			2011					20	12			20	13		2014				2015				2016			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Technical Design Report					Х															1	-							-
Sensors procurement and qualification																												
ROCdig new layout								_																				
ROCdig testing and pre-serie																												
ROCdig procurement and qualification																												
System, TBM Development and pre-serie														_														
TBM Procurement and qualification						_																			_			
HDI Development and preseries															,													
HDI procurement and qualification																												
Module pre-production qualification														(
Module production													X															
Detector Mechanics and Supply tube																												
FED development and construction																												
Optical Link Development																									_			
Optical Link Construction																												
Power System Development																												
Power System Construction																												
Cooling System Development														1														
Cooling System Construction and test				1	-			-								-												
System Integration																	Х											
System long term test at TIF	-																				X							
Installation and commissioning in P5																									Х			

2nd shutdown: Trigger

- Issues for Trigger upgrade
 - New technology for trigger systems
 - More common components, easier to maintain
 - Finer granularity processing better performance
 - Key Issue: How to smoothly integrate a new trigger into a running experiment
 - Parallel operation
 - Slice tests of new detector back/ends and trigger system

CMS Upgrades ideal scenario

2012 Shutdown

- Begin Installing forward muon systems
- HO SiPMs (Hadronic Calorimeter Tail Catcher)
- HF PMTs (Forward Hadron Calorimeter eta 3-5)
- Pixel Luminosity Telescope

2016 Shutdown

- Install new beampipe
- Install new pixel detector
- Install HB/HE photo-detectors
- Install new trigger system

> 2020 Shutdown

- Install new tracking system
- Major consolidation/replacement of electronics systems
 - Including potentially ECAL electronics
- ECAL Endcaps (subject of a task force)
- DAQ system upgrade

Technical Coordination: Shutdown planning 2011-13: 1st draft

Time	Est. Int. Lumi/fb- I	Tasks	Logistic Scenario		
2011-2013	30-50	Infrastructure modifications (i-ix)	fully open both ends		
		Test beampipe region RP shielding			
		HO & CASTOR phototransducer change			
		YE4-z shielding wall/YE4+z shielding wall			
		4'th muon endcap station –z (CSC + RPC)(+ possibly RPC for +z)			
		CASTOR, TOTEM, ZDC removed for pp			
		Pixel Luminosity Telescope (PLT) installed.			
		BSC extension, FSC completion			
		ZDC crane installation			

Technical Coordination: Shutdown planning 2014-16: 1st draft

Timeframe	Est. Integrated Luminosity/fb- I	Tasks	Logistic Scenario
2014-2016	30-50	central beamipe, $\phi \longrightarrow 50$ mm	fully open both ends
		Pix/BCM removed, bakeout required	
		HB/HE front end re-build +z and -z	
		HF phototube replacement +z and -z	
		l'st muon station readout granularity +z and –z	
		Muon barrel front-end revision	
		4 layer, low-mass pixel tracker	
		BSC replacement.	
		Trigger modifications for high lumi	

Technical Proposal

- We have nearly finished the Technical Proposal.
- Chapters have been through internal review of subdetectors
- Document is going through final tidying and editing, and a pass through the entire collaboration
- Will aim to finish all content by time of the RRB, and finish all edits (and submit to LHCC) by the end of October
- Have given the LHCC the latest draft, but ask you to review only chapters 1,3,4,5,6 – you can glance at the rest to see the scope of work

Conclusions

Firm planning for the upgrades in this decade

- Technical Proposal describing the work is nearly finished, work on detailed planning for the upgrades well underway
- TDRs for substantial work to follow
 - Expect TDR for the Pixel Upgrade to come early next year
- R/D for the upgrades in the next decade is going on in parallel
- There are some smaller projects for this decade which fill in some gaps and are not yet agreed by CMS, but we are evaluating them