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Group Activities

• Journal Club: Monday 13:30
Discussion of recent arXiv papers, Talks by members of the group, 
Discussion/review of important topics

• Seminar: Tuesday 14:00

• CERN winter school on strings and fields: Feb 7-11, 2022

Events

Thomas van Riet:     De Sitter in string theory,  
Dalimil Mazac:          S-matrix/conformal bootstrap,  
Netta Engelhardt:     Quantum gravity 
Matthias Gaberdiel:  Exact AdS/CFT 
Fabian Ruehle:         Machine learning 
Zohar Komargodski: Something cool about QFT

• TH-institutes, probably…?
Non-perturbative QFT? De Sitter?….



What’s String/QFT? 
Highlights of recent developments



Sociology of String/QFT

Quantum Gravity Quantum Field Theory

String Theory

Black hole, Information paradox 
Entanglement entropy,  
emergent spacetime,….

S-matrix / conformal bootstrap, 
amplitudes techniques, 
supersymmetry, integrability

String compactification  
(Calabi-Yau, G2 manifold, F-theory) 
String pheno, de-Sitter solution, 
topological string

“Bootstrappers”“Entanglers”

“Stringers”
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Quantum Field Theory, strongly coupled

Questions

• Confinement in QCD 
• Strongly coupled RG fixed point (3-d Ising) 
• Phases of matter (topological insulator etc)
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S-matrix & conformal bootstrap

Basic idea: Constrain QFTs from basic principles (symmetry, unitarity etc)

Low energy data

Wilson coefficients,  
mass of bound states,

No!

Maybe yes…
Bootstrap oracle

crossing symmetry, unitarity



S-matrix & conformal bootstrap

Basic idea: Constrain QFTs from basic principles (symmetry, unitarity etc)

Bootstrap oracle

Low energy data

crossing symmetry, unitarity

No!

Maybe yes…

Mini S-matrix bootstrap revolution (End of 2020)

• 2-sided bounds on Wilson coefficients from dispersion rel + crossing 
• Full use of unitarity constraints: Positive moments, EFThedron 
• Potentially useful for constraining (B)SM EFT 

Caron-Huot, Mazac, Simmons-Duffin, Rastelli, Bellazini, Elias 
Miro, Rattazzi, Riembau, Riva, Huang, Arkani-Hamed …

Wilson coefficients,  
mass of bound states,



Non-invertible symmetry

Basic idea: Generalize the notion of symmetry and constrain RG.

g ⋅ g−1 = I
Usual symmetry

for any g

Non-invertible (“categorical”) symmetry

η2 = I, N2 = I + η, Nη = ηN = N
2d Ising: Tambara-Yamagami fusion category

• Some examples in 4d:  Yang-Mills at  
• Prohibit some terms in Lagrangian from being generated by RG. 

(Implication to naturalness…?)

SO(3) θ = π

cf. Talk by Komargodski in TH colloquium, August 2020

Other generalizations: higher form symmetry, subsystem symmetry
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Quantum Gravity, black hole in particular…

• Is black hole evaporation unitary? 
• Emergence of spacetime 
• Cosmology, singularity, ….

Questions

Tools
• Holography, AdS/CFT 
• Entanglement entropy (spacetime = entanglement) 
• Semiclassical gravitational path integral



Information paradox
Black hole formed by collapsing matter evaporates into thermal radiation.

Unitarity..?

More precise measure: entanglement entropy of radiation.

Big mismatch



Island “revolution”

After the “Page time”, different spacetime contributes to semiclassical 
gravity path integral!

Pennington, Almheiri, Engelhardt, Maxfield, Maldacena, Hartman,  
Shagoulian, Tajdini…. 2019

Island Replica wormhole

Reproduces the “Page curve”
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String Theory, with emphasis on compactification

• Can we compactify string theory on 6d manifold 
and get SM + alpha? 

• Can we construct de-Sitter solution? 
• What’s the prediction?

Questions

Tools
• F-theory, Mathematical results on various manifolds (Calabi-Yau, G2 

manifold,….) 
• Topological string: String theory  math 
• Inductive reasoning: construct examples and infer general properties, 

Swampland program

→



Swampland conjectures/programs

Basic idea: Not every EFT can be consistently coupled to quantum gravity

Established

Relevance to 
phenomenology

No symmetry conjecture
Weak gravity conjecture

Infinite distance conjecture

De Sitter conjecture

Speculative

Fantasy

⋱



No symmetry conjecture

Claim: In quantum gravity, all symmetries are either gauged or broken.

Evidence:  
• String perturbation theory. 
• Black hole entropy. (No remnants with high entropy) 
• AdS/CFT 
• Gravity path integral (wormholes)

Recent generalization:  
• No non-invertible symmetry  Charge completeness hypothesis 
• Cobordism conjecture  prediction of new non-perturbative objects

→
→



Fruitful interactions

Quantum Gravity Quantum Field Theory

String Theory
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AdS/CFT

Quantum Gravity 
 in asymptotically AdS

Quantum Field Theory=
Black hole QGP / highly excited state

Classical Einstein gravity Maximally chaotic quantum system

Black hole formation Thermalization

Black hole horizon Deconfinement

Gravity S-matrix bootstrap Conformal bootstrap

Swampland conjectures Conjectures on QFT
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Factorization puzzle
Including wormholes in gravity path integral leads to a puzzle: 

2 CFT

=
2 AdS

+
Wormhole

In a simplified setup, one can perform string theory path-integral and show 

2 AdS

=
Worm hole

Eberhardt 2020

Maybe sum over geometries unnecessary/redundant in full string theory?
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Bootstrapping swampland?
Swampland program and bootstrap share the common philosophy

Not everything in IR can be UV-completed

AdS/CFT + conformal bootstrap (or S-matrix bootstrap) can judge if the 
swampland conjectures are true or not:

No / Maybe

Conjectures

What I expect to see from March…..



String/QFT

Quantum Gravity Quantum Field Theory

String Theory

Black hole, Information paradox 
Entanglement entropy,  
emergent spacetime,….

S-matrix / conformal bootstrap, 
amplitudes techniques, 
supersymmetry, integrability

String compactification  
(Calabi-Yau, G2 manifold, F-theory) 
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topological string

No border!



Shota Komatsu
Univ of Tokyo Perimeter Institute IAS

Staff at CERN 
from 2020

Research: past / present
• Solving to N=4 super Yang-Mills using Integrability 
• Relating S-matrix/conformal bootstraps by flat space limit of AdS 
• Analyticity / unitarity constraints in de-Sitter 
• Generalizing amplitude techniques to AdS

Di Pietro, Gorbenko, SK

Eberhardt, Mizera, SK

2 questions I’m currently obsessed with

• Non-perturbative effects in heterotic string 
• RG analysis of gravitational collapse

TH job: visitor committee, students
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LD staff 
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Alba Grassi - QFT & Strings

Theoretical Physics

Mathematical Physics 

Research interests:

Use ideas and tools developed in the context of 
string theory and supersymmetric gauge theory 
to obtain new results in mathematical physics.



Alba Grassi - QFT & Strings

Theoretical Physics

Mathematical Physics 

Research interests:

- Spectral theory of quantum mechanical operators

- Painlevé/gauge correspondence

Examples:

- Enumerative geometry

- Matrix models



Alba Grassi - QFT & Strings

Theoretical Physics

Mathematical Physics 

Research interests:

Make some aspects of quantum field and 
string theory quantitively and structurally 
precise, for example at the non-
perturbative level.



Alba Grassi - QFT & Strings

Theoretical Physics

Mathematical Physics 

Research interests:

- Topological string theory (eg: non-perturbative effects) 

- String dualities  (eg: testing AdS/CFT )

- Simplifying regimes of QFT (eg: large N or large charge) 

Examples:



Alba Grassi - QFT & Strings

Something about me:

Born and grew up in 
Frasco, Ticino 2012-2015:  PhD @ UniGe 

2015-2017:  ICTP Trieste 

2017-2020:  Simons Center for Geometry 
                and Physics, Stony Brook 

Thank you!

Life Work



Kyriakos Papadodimas

Sta↵ member since 2020 (and before fellow, LD)

TH responsibilities: Fellows and Associates committee

Research interests:
Quantum Gravity
String Theory
AdS/CFT
Black Holes
Non-perturbative aspects of QFT

1



Quantum Gravity and Holography

Quantum Gravity: UV vs IR, spacetime and gravity as emergent concepts, AdS/CFT

Fundamental principles of holography, role of entanglement and quantum information

Some general lessons: limitations of locality, quantum mechanics and observables in
quantum gravity.

2



Black hole information paradox

SA

SBH

Unitarity of BH evaporation hints that HB ⇢ HA (BH complementarity, islands,
replica wormholes...)
Dramatic violation of locality at fundamental level, but not visible in e↵ective field
theory:[�(xin),�(xout)] = O(e�S)
Operators corresponding to observables in region B are complicated combinations of
those in A.
Observables in region B appear to be state-dependent. New intriguing feature of Q.
Gravity. 3



Interior geometry of a typical BH microstate

CFT? CFT

P P

BH entropy: S = A
4G ! eS BH microstates (in AdS/CFT dual to microstates of

thermal plasma of N = 4 SYM)
“Typical BH microstate”:  =

P
i ci|Eii, ci = Haar-random

What geometry does an infalling observer see? How do we describe in CFT an
operator inside the BH? Various techniques (Tomita-Takesaki modular theory,
Quantum Error Correction, Petz map...) ! State dependent CFT operators eOP .
Open questions: Dynamical principle/time evolution for infalling observer? Excited
states?

4



(Approximate) factorization of Hilbert space in Quantum Gravity? Local di↵
invariant observables?

QFT without gravity ) “Split property”: can specify quantum state in A and B
independently. Closely related to existence of local operators in QFT.
In gravity this is not the case:
1) Simple reason: mass in B can be measured in A.
2) Deep reason: Black hole complementarity/islands ! factorization not possible at
fundamental level. However, we do expect some type of approximate factorization at
the level of e↵ective field theory. How to do this precisely is still an open question.

Ongoing work: We have made some progress in understanding how to construct
approximately local, di↵-invariant observables in certain classes of states ) a first step
towards understanding approximate factorization 5



Sasha (Alexander) Zhiboedov



TH/CERN

•TH colloquium

•CERN colloquium

(a broad coverage of  important scientific developments)

please send me an email if you have an idea!

"Non-technical talk of  general interest addressed to all people at CERN from all departments”



My work
Nonperturbative methods in (Lorentzian) QFTs

(S-matrix bootstrap, CFT bootstrap, holography)

SM+GR+Consistency = Strings
?

•Bounds on gravitational EFTs (QFT/QG landscape)

•S-matrix bootstrap (nonperturbative tools)

(String theory exists because it is the only way that Nature can make sense)

“One is never sure to have completely exploited the axioms of QFT.” 

A. Martin

[Tolley,Wang,Zhou ’20]
[Caron-Huot, Van Duong ’20]

[Arkani-Hamed,Huang,Huang ’20]



Bound on gravitational EFTs
[Bern, Kosmopolous, AZ ’21]

Consistency (unitarity+causality) requires that it can expressed through its 
discontinuity (dispersion relations)

⇢J(m
2) � 0

<latexit sha1_base64="qodKnJzo98rCwMG92MH75mh0N3k="></latexit>

(unitarity/“optical theorem”)



Bound on gravitational EFTs
[Bern, Kosmopolous, AZ ’21]

f(s, u) ⇠ ak,is
itk�i

<latexit sha1_base64="Q5wciIqKSZZp30gkPUYg1GJqgDQ="></latexit>

Conspiracy without symmetry (low spin dominance)

EFT expansion:



Multi-particle Landau Curves
Unitarity constrains the analytic properties of  the amplitude

normal  
threshold

double discontinuity



Double Discontinuity

[Mandelstam ’58]

dD
isc =

0

<latexit sha1_base64="2VzlIFfevk5rZkUvJUbZH0d4B9Y="></latexit>

What are the consequences of  multi-particle unitarity for 2-2 amplitude?

Double discontinuity acquires nontrivial support along the Landau curves



4-particle Landau Curves
[Correia, Sever, AZ, to appear]

Infinitely many 
Landau curves 

at finite s&t

Shadow that multi-particle unitarity casts on the 2-2 amplitude 

dD
isc =

0

<latexit sha1_base64="2VzlIFfevk5rZkUvJUbZH0d4B9Y="></latexit>



Analyticity
[Correia, Sever, AZ, to appear]

Multi-particle Landau curves accumulate on the physical sheet.

(accumulation points of  infinitely many Landau curves)



THEORY RETREAT 2021

PABLO BUENO
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CURRENT RESEARCH 1/2 :

CLASSICAL GRAVITY & BHS

• IDENTIFYING / CLASSIFYING HIGHER-CURVATURE EXTENSIONS
OF EINSTEIN GRAVITY WITH SPECIAL PROPERTIES

CRITERION : 2
"d-ORDER EOM ON CERTAIN BACKGROUNDS

•

"GENERALIZED QUASI TOPOLOGICAL GRAVITIES
"

•• 2nd- order EOM on MSB •• Aualityc thermodynamics
• Non - hairy BHS with odttodrr -⇐_ -11

•
via Ads /CFT→ Identification of universal properties

*
• Continuous Einstein limit fraud for general CFTSI .

• Non - trivial examples in DBd=-_ At • Accessible at arbitrary orders

• Subset also 2¥order EOM on FLRW
↳ Toy models of QQ.GG#

. . .
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CURRENT RESEARCH 1/2 :

CLASSICAL GRAVITY & BHS

THESE DAYS :

→ FULL CLASSIFICATION AT GENERAL ORDERS AND 1374

→ GQTS IN D= 3

→ HOLOGRAPHIC COUNTERTERMS ← SPECIAL THEORIES

→ BIRKHOFF THEOREMS IN HIGHER - CURVATURE GRAVITIES ?

KEY COLLABORATORS : PABLO A. CANO , ROBIE
HENN / GAR, JAVIER MORENO

ROBERTO EMPARAN , QUIM LLORENS
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e.g. 1 ENTANGLEMENT ENTROPY (EE) OF SINGULAR REGIONS

FULL CHARACTERIZATION , UNIVERSAL RESULTS

e.g. 2 DISK REGIONS MAXIMIZE EE IN ☐=3

e-g. 3 NEW UNIVERSAL RELATION BETWEEN TWO DIFFERENT

MEASURES : MUTUAL INFORMATION
AND REFLECTED ENTROPY
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CURRENT RESEARCH 2/2 :

ENTANGLEMENT IN QFT

•
"
QFT FROM ENTANGLEMENT

"

APPROACH

AXIOMATIZING QFT IN TERMS OF VACUUM ENTANGLEMENT

MEASURES (MUTUAL INFORMATION I

↳ WHAT ARE THE AXIOMS ?

↳ HOW DO WE RECONSTRUCT A QFT FROM ITS MI 's ?

↳ CAN WE OBTAIN GENERAL CONSTRAINTS , BOUNDS,

ETC . VALID FOR GENERAL THEORIES ?



CURRENT RESEARCH 2/2 :

ENTANGLEMENT IN QFT

THESE DAYS :

→ N - PARTITE INFORMATION IN QFT

→ CONFORMAL BOUNDS IN D= 3 FROM ENTANGLEMENT

→ BOSON - FERMION DUALITY IN D=2 FROM ENTANGLEMENT

→ EE GEOMETRIC EXTREMIZATION IN ☐75

KEY COLLABORATORS : HORACIO CASINI , JAVIER MAGAÑ , CÉSARAGÉN
OSCAR LASSO, ALEJANDRO VILAR
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BEYOND PHYSICS . . .

• CURRENTLY STUDYING A BACHELOR DEGREE
IN ECONOMICS (~ 42,5% COMPLETED )

• I ALSO LIKE READING /STUDYING ABOUT HISTORY,
POLITICS, HUMAN BEHAVIOR , ETC .

• ALSO ENJOY DRAWING . . .

• SPORTS : USED TO PLAY A LOT OF TENNIS

(LET ME KNOW IF YOU ARE UP FOR A PRACTICE )
ALSO FOOTBALL, BASKET, GYM . . .

&
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Holography 

QFT  String theory ↔

Integrability 
Solvable 2D 

QFTs

How does Quantum Field Theory look at finite coupling?



Holography 

QFT  String theory ↔

Integrability 
Solvable 2D 

QFTs

⟨#1#2…#n⟩
%(p1, …, pN)

QFT

Holography
#1

#2

…

#n

ℝ3,1

Holographic 
Direction

pμ
1 pμ

2

pμ
3

…

Strings

Integrable  
2D worldsheet 

(sometimes, e.g. N=4 SYM)time

space

Factorized scattering 
in 2D

=
q1

q2q3

etc.

How does Quantum Field Theory look at finite coupling?



6.5 Crosscap States for the Free Boson 239

string theory, these conditions are known as the tadpole cancellation conditions
which we will discuss in Sect. 6.7.

6.5 Crosscap States for the Free Boson

Similarly to boundary states which describe the coupling of the closed sector
of a CFT to a boundary, for orientifold theories there should exist a coherent
state describing the coupling of the closed sector to the crosscap. In particular,
analogous to the observation that a world-sheet boundary defines (or is confined to) a
space–time D-brane, we say that a world-sheet crosscap defines (or is confined to)
a space–time orientifold plane.

In this section, we will discuss crosscap states for the example of the free boson,
and in the next section, we are going to generalise the appearing structure to RCFTs.

Crosscap Conditions

We start our study of crosscap states by recalling the transformation of the Klein
bottle, and Möbius strip amplitude respectively, from the open to the closed sector
shown in Figs. 6.6 and 6.7. There, we encountered a new type of boundary, the
so-called crosscap, where opposite points are identified. For the construction of the
crosscap state, we will employ this geometric intuition, however, later we also com-
pute the tree-channel Klein bottle and Möbius strip amplitudes to check that they
are indeed related via a modular transformation to the result in the loop-channel.

As it is illustrated in Fig. 6.8, in an appropriate coordinate system on a crosscap,
we observe that points x on a circle are identified with −x . Parametrising this circle
by σ ∈ [0, 2π ), we see that the identification x ∼ −x corresponds to σ ∼ σ + π .

x ↔ σ

−x ↔ σ+π

(a) Identification of points on
a crosscap

(b) Closed string at a
crosscap

Fig. 6.8 Illustration of how points are identified on a crosscap, and how a closed string couples to
a crosscap

(real projective spaces)

For holographic CFTs: New setups for AdS/CFT 
involving less standard ingredients like orientifolds

What happens when we place an integrable 
theory on a crosscap?

Current interests:  
QFTs on non-orientable manifolds, like ℝℙ2n

Observables are more sensitive to !ne details of the theory, such as 
topological couplings (e.g. -angles)θ

[works in progress w/ L. Rastelli and also S. Komatsu]



Leading instanton correction to the spectrum
Instantons in large N     [w.i.p. w/ S. Komatsu & Y. Wang]

Current interests:  
Good old SU(N) =4 SYM in flat space(



Leading instanton correction to the spectrum
Instantons in large N     [w.i.p. w/ S. Komatsu & Y. Wang]

Δ = (Δ0,0(λ)+
Δ0,1(λ)

N2 + …) + (e2πiτ + e−2πiτ̄)(Δ0,0(λ)+
Δ1,1(λ)

N2 + …) + …

“Planar’’ correction 
Integrability: 2002-2018

What we are aiming

Hint: D-instanton = Integrable boundary state on the world-sheet. Bootstrap it!

Current interests:  
Good old SU(N) =4 SYM in flat space(



Current interests:  
Good old SU(N) =4 SYM in flat space(

Finite N spectrum: no integrability, but still lot of symmetry! 

Goal: exact Spectrum for !nite N, in the large charge limit.

Finite N & Large charge  [w.i.p. w/ S. Komatsu & Y. Wang]
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Broad overview of research interests

1. Lorentzian singularities as probes of bulk locality: The AdS/CFT
correspondence provides a tool for studying quantum field theories at
strong coupling. At infinite coupling new singularities can arise in
correlation functions, related to light rays in the bulk. These singularities
allow us to probe local bulk physics, and are often sensitive to stringy
effects. Can we understand the implications for the boundary theory?

2. Holographic CFTs at finite temperature: CFTs at finite temperature are
dual to black holes in Anti de Sitter space. I am interested in what this
duality tells us about correlation functions at finite temperature, and
thermalization in general.

3. Stringy effects near horizons: Black holes can act as natural particle
accelerators, with large energies near the horizon. Are there any
signatures of string theory that arise from these large energies? What are
the proper observables for detecting these signatures (possibly in our
universe)?



Recent work, Part I:
Stringy effects in the thermal two-point function

1

I Consider the two point function at finite temperature. What kinds of
singularities can arise?

I At infinite coupling there is a new singularity that comes from null
geodesics in the bulk connecting two boundary points. These geodesics
can wind around the black hole photon sphere many times.

I What about when we take stringy effects into account? These effects can
be analyzed exactly by zooming in on the geodesic (going to the Penrose
limit). It turns out that the probability for the string to be tidally excited
grows as we approach the singularity. This resolves the singularity.

1With Ooguri



Recent work, Part II:
Averaging over free boson CFTs

2

I A recent development in holography is that bulk theories can be dual to
averages of CFTs. One example is a duality between free boson theories
and Chern-Simons theories in the bulk.

I Given a general lattice with quadratic form Q, one can construct a
corresponding free boson theory. This theory has a moduli space called
the Narain moduli space. We computed the averaged partition function
for general lattices,

h#Q(⌧)i = EQ(⌧).

This formula was known to the mathematician Siegel a century ago.
I In the bulk, one can consider a (spin)-Chern-Simons theory with level

matrix Q. The partition function is obtained by summing over
geometries, and reproduces the Eisenstein series EQ. This is an
interesting set of examples of averaged dualities with spin-structure
dependence and a gravitational anomaly.

2with Ashwinkumar, Kidambi,Leedom,Yamazaki



Ongoing work:
Stringy effects near Kerr black holes

3

I For near-extremal Kerr black holes, the photon sphere is very close to the
horizon. The black hole therefore acts as a particle accelerator, which
speeds up ingoing particles so that they collide at very high energies,

E2
cm ⇠ E1E2

1 � rH/r
.

I For particles that collide very close to the horizon this energy can
become string scale. Can we use this accelerator to detect string theory?
We need to find the proper observable.

I The kinematics of collisions in the black hole are highly constraining,
and do not allow the high energy behavior to be detected by observers at
infinity.

I We are investigating a thought experiment where one detector is sent
into the black hole, and a few other detectors sit at infinity. The
correlation function measured by these detectors is one candidate
observable for measuring the high energy behavior.

3With Ooguri



Looking ahead: some ideas

1. Long-lived states at finite temperature: A generic perturbation to a
thermal system will thermalize quickly. The dual statement in AdS/CFT
is that the perturbation will create an excitation which falls into the black
hole. On the other hand, there are classically stable orbits around a black
hole which do not fall in. Can we compute their lifetime? What are the
implications for the boundary theory?

2. Signatures of the plane wave in boundary correlators: One simple limit
of AdS/CFT is the plane wave limit. This corresponds to zooming in on
a null geodesic traveling on the five-sphere in AdS5 ⇥ S5. In this limit the
bulk string theory is exactly solvable. Is there a kinematic limit of
boundary correlators that is sensitive to the plane wave geometry? If so,
can we sum up the stringy corrections in this limit?
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Organizer of the String Journal Club 2019-2020
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Organizer of Island Hopping 2020

Contact physicist for Arts at Cern

TH “consultant” for the quantum world exhibit
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The two main avenues of my research

Q1: What is the space of consistent theories of
quantum gravity?

Q2: How is the gravitational information
encoded in the microscopic description?

Alexandre Belin Holography and Quantum Gravity in AdS



Quantum gravity with ⇤ < 0

Consistent Theories of Q.G. =) CFTs

“Exotic” CFTs:

Large N

Strong Coupling

Few operators with � ⇠ O(1)

Use bootstrap =) E�cient constraints on CFT

Alexandre Belin Holography and Quantum Gravity in AdS



The big open problem

So far, we have studied theories with

�matter ⇠ GN

The question we would like to answer:

Can we consistently couple the Standard Model to
gravity?

SCFT = SCFT + N#
R
ddx [Tr(O)]k

Alexandre Belin Holography and Quantum Gravity in AdS



The big open problem

So far, we have studied theories with

�matter ⇠ GN

The question we would like to answer:

Can we consistently couple the Standard Model to
gravity?

SCFT = SCFT + N#
R
ddx [Tr(O)]k

Alexandre Belin Holography and Quantum Gravity in AdS



Main tools for an emergent spacetime

1 Quantum Information Theory

2 Quantum Chaos

Alexandre Belin Holography and Quantum Gravity in AdS



Main tools for an emergent spacetime

1 Quantum Information Theory

2 Quantum Chaos

Alexandre Belin Holography and Quantum Gravity in AdS



Quantum chaos

Strongest form of universality in physics!

1. H ⇠ Random matrix

2. Eigenstate Thermalization Hypothesis (ETH)

hEi |Oa |Eji = �ijŌa + e�S(Ē )/2ga(Ē , �E )Rij

Alexandre Belin Holography and Quantum Gravity in AdS



Chaos and black holes

What does this have to do with black holes?

Quantum system �! N = 4 SYM

Universality of �i ,Cijk for Oi with �i ⇠ N2

=) Black hole microstates

Special to CFTs: Cijk with �i ,j ,k ! 1

Alexandre Belin Holography and Quantum Gravity in AdS



Chaos and black holes

What does this have to do with black holes?

Quantum system �! N = 4 SYM

Universality of �i ,Cijk for Oi with �i ⇠ N2

=) Black hole microstates

Special to CFTs: Cijk with �i ,j ,k ! 1

Alexandre Belin Holography and Quantum Gravity in AdS



The BH information paradox

The spectral form factor:

g(t) = |Z (�+it)|2 =
X

m,n

⇢(Em)⇢(En)e
��(Em+En)+it(En�Em)

SBH = AHor

4GN
�! discrete spectrum, info. paradox

Alexandre Belin Holography and Quantum Gravity in AdS



Quantum Gravity meets Statistical Physics

Proposal:

Semi-classical general relativity
=

Thy of statistical distribution of ⇢(Ei) and Cijk

=) Encodes this through Euclidean wormholes
Alexandre Belin Holography and Quantum Gravity in AdS



Thank you!
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Conformal field theory,  
gravity and all that
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My research interests

Conformal field theories
Implications for  

black holes
SBH =

kc3

4~GA
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Quantum  
information

SE = �tr[⇢A log ⇢A]
<latexit sha1_base64="8jtXbFKzrjsRea73aB0YdVhVjug="></latexit>

Deformations  
of CFTs

Modular 
functions



How robust are our techniques  
for quantizing gravity?
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Holography and partition functions

AdS/CFT provides us with a non-perturbative framework 
to tackle quantum gravity path integrals.

ZAdS = ZCFT
<latexit sha1_base64="ETxr5PiMxBKCPLgqqMUpKYxRB1w="></latexit>



Factorization puzzle in AdS/CFT

CFTa

CFTb

CFTa

AdS

CFTb

AdS

ZAdS = ZCFT
<latexit sha1_base64="ETxr5PiMxBKCPLgqqMUpKYxRB1w="></latexit>
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Z(�a,�b) = Z(�a)Z(�b)



CFTa

CFTb

CFTa

CFTb

Euclidean
wormhole

Factorization puzzle in AdS/CFT
!ere can be a scenario where  

the partition function does not factorize. 

<latexit sha1_base64="zCWVi8Zb/5VNnPX6/PHuye7rPqg="></latexit>

Z(�a,�b) 6= Z(�a)Z(�b)



A possible resolution?

Potential resolution: the dual CFT isn’t a single theory,  
but an average of an ensemble of theories.

!is leads to connected pieces of observables.

hZ(�1)Z(�2) · · · i =
Z

M
[Dµi] Zµi(�1)Zµi(�2) · · ·

<latexit sha1_base64="zRBJuIKG7PNaLIFPERTub8ire7o="></latexit>

<latexit sha1_base64="Q7n5YP8pfunZRhSAZaGU4NwVTMM="></latexit>

hZ(�1)Z(�2)i = hZ(�1)ihZ(�2)i+ hZ(�1)Z(�2)iconn.

!"##$%"&'()'*%"+#(,-*$./0#*-1,%0#2,3'1$./4/5

average over couplings
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Ensemble averaged holography

!is idea originates from disorder averaging  
in the context of spin-glasses.

Further support: 2d JT gravity is dual to  
an ensemble of large random Hermitian matrices.

hZ(�1)Z(�2) · · · i =
Z

M
[Dµi] Zµi(�1)Zµi(�2) · · ·

<latexit sha1_base64="zRBJuIKG7PNaLIFPERTub8ire7o="></latexit>

average over couplings

How does this generalize in higher dimensions?
!"##$%"&'()'*%"+#(,-*$5
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Averaging in 2d CFT
How can one possibly construct a random/averaged 2d CFT?

!0#1-('9%:3++'(8/;<='$$3%>-&(%?#*+@#(%A#B$3(38/C

D'(B#@3(%E'11'*%F-GH*3%I#$'&8/;7&J3()H@#*%K-$'17-(%E3$#@L3%M''$-@%N#@#O#)35

Average over the moduli space of marginal couplings. 
!is has been studied recently for D free bosons.

hZ(�1)Z(�2) · · · i =
Z

M
[Dµi] Zµi(�1)Zµi(�2) · · ·

<latexit sha1_base64="zRBJuIKG7PNaLIFPERTub8ire7o="></latexit>

Take a bootstrap approach. Find properties of the averaged 
theory from some constraints, such as modular invariance.
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average over couplings



Averaged flavored partition function

!"K%KH#*9%E*#H7%0#3+9%0#1-('9/P#*Q3R/STSUV5

!is has the expected modular properties and  
matches with a holographic theory of “U(1)” gravity. 

From its definition, we know that it is possible to make the power series expansion Y (z, ⌧) =
P

1

m,n=0 Ym,n(⌧, ⌧)z2mL z2n
R
. The heat equation then provides a set of recursive relations among

the coe�cients in this series expansion. This is easiest to implement by writing

Y (zL, zR, ⌧, ⌧) =
X

(c,d)=1

e
�i⇡

✓
cz2L
c⌧+d�

cz2R
c⌧+d

◆

|c⌧ + d|D
+�Y (zL, zR, ⌧, ⌧) . (3.36)

The first term on the right hand side obeys the heat equations, so �Y must as well. It will

therefore obey the heat equations and admit the expansion Y (z, ⌧) =
P

1

m,n=0 �Ym,n(⌧, ⌧)z2mL z2n
R

with �Y0,0 = 0. It is simple to see that the heat equation implies recursion relations that

force all of �Ym,n = 0. We conclude

Y (zL, zR, ⌧, ⌧) =
X

(c,d)=1

e
�i⇡

✓
cz2L
c⌧+d�

cz2R
c⌧+d

◆

|c⌧ + d|D
. (3.37)

We saw in the previous section that this also obeys the flavored Laplace equation, as it

should. The above object is often called the non-holomorphic Jacobi-Eisenstein series; to our

knowledge, holomorphic versions of this quantity were first considered in [16].

3.4 Average density of states

Our conclusion is that the average flavored partition function is

hZ(⌧, z)i =
1

|⌘(⌧)|2D

X

(c,d)=1

e
�i⇡

✓
cz2L
c⌧+d�

cz2R
c⌧̄+d

◆

|c⌧ + d|D
. (3.38)

We wish to extract from this formula the averaged density of states ⇢(j,�, QI , Q̄I), as a

function of the spin j = (L0 � L̄0) 2 Z, dimension � = L0 + L̄0 and charges QI , Q̄I of

a state. As our partition function depends only on the O(D) ⇥ O(D) invariants z2
L
and

z2
R
, the resulting density of states is a function only of the total charges Q =

p
QIQI and

Q̄ =
p
Q̄IQ̄I in the left- and right-moving sectors, respectively. As we are interested only in

the density of primary states, we will omit the prefactor |⌘(⌧)|�2D in what follows.

We begin by noting that the term in the sum with (c, d) = (0, 1) simply describes the

contribution of the ground state. We will therefore concentrate on the terms in the sum with

c > 0. To extract the average density of states, we will first perform the Fourier transform

which takes us from a sector of fixed chemical potentials (zI
L
, zI

R
) to a sector of fixed charges

(QI , Q̄I), where the contribution to the partition function is:

Z(⌧, QI , Q̄I) =

Z
dzI

L
dzI

R
e2⇡i(z

I
LQ

I+z
I
RQ̄

I)

0

B@
X

(c,d)=1

e
�i⇡

✓
cz2L
c⌧+d�

cz2R
c⌧+d

◆

|c⌧ + d|D

1

CA . (3.39)

14

recent work in this direction [2, 3] has focused on CFTs with enhanced symmetry algebras

where the space of CFTs can be understood precisely (related works in this direction include

[4–8]).

The natural starting point is perhaps the simplest possible family of two dimensional

CFTs: unitary, compact CFTs with U(1)D ⇥ U(1)D current algebra and central charge

c = D. These are simply theories of D free compact bosons, and the data which defines such

a theory is an even, self-dual lattice of signature (D,D). The moduli space of such theories

is the homogeneous space [9, 10]

MD = O(D,D,Z)\O(D,D)/O(D)⇥O(D) . (1.1)

This space has finite volume, and a unique homogeneous metric which can be used to define a

probability distribution on the associated space of CFTs. The work of [2, 3] argued that this

ensemble average is dual to an exotic three dimensional theory of gravity in AdS3 dubbed

“U(1) gravity.” This theory of gravity includes as its perturbative degrees of freedom a U(1)2D

Chern-Simons theory describing the gauge dynamics dual to the U(1)2D global symmetry

in the boundary. The non-perturbative structure of the theory is defined by a sum over

geometries in the bulk. Together these ingredients were shown to reproduce the ensemble

average of the genus g partition function, which was computed using the Siegel-Weil formula

in terms of a real analytic Eisenstein series [11–13].

The genus g partition function, however, is not the most general observable of the theory.

The theory contains global U(1) charges, so one can in addition consider “flavored” partition

functions which include fugacities that couple to these global U(1) charges. For example, on

the torus one can consider the flavored partition function

Z
�
⌧, ⌧̄ , zI

L
, zI

R

�
= Tr

h
e2⇡i⌧(L0�

c
24 )e�2⇡i(L0�

c
24 )e2⇡iz

I
LJ

I
0 e�2⇡izIRJ̄

I
0

i
, (1.2)

which depends on both the conformal structure parameter ⌧ as well as a D-component vector

(zI
L
, zI

R
) of chemical potentials. Geometrically, these chemical potentials can be interpreted

as background Wilson lines which couple to the global U(1) charges (QI , Q̄I) of a state. At

higher genus, one can consider more general flavored partition functions which include Wilson

lines wrapping arbitrary cycles in the boundary surface.

The natural question is then: is there a version of the Siegel-Weil formula which allows

one to compute the ensemble average of these more general observables? And second – and

perhaps more importantly – does the result yield some insights into the structure of the

theory and its gravity dual beyond the higher genus partition functions considered in [2]?

The answer to the first question is, in fact, not di�cult. The observation begins with the fact

(that we will explain in much more detail below) that the counting function for primaries,

2

Grand canonical partition function

!e result is given by a Jacobi-Eisenstein series.



Extremal black holes 

!W&-7&%0#2,3'1$%AH*3#X3/STST8//

"K/P=?Y6/STSUV5

Excitations near the horizon of extremal black holes  
in 3d anti-deSitter space.

Is there a description  
using random matrices  

for more general 
theories of gravity?

Z2d CFT ! ZSchwarzian
<latexit sha1_base64="1CvXsUBpa/vQBxpY2dNCk+HzbD0="></latexit>
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to extract non–perturbative results for the full JT (su-
per)gravities. In particular, this section will explain how
(using the supergravity examples) the truncation scheme
of the previous paragraph works. Section IV will solve
the full quantum mechanical system to yield the non–
perturbative spectral density (and hence the partition
function), for the supergravity cases. Then Section V
turns to the non–perturbative spectral form factor for
the supergravities, explaining how it is computed and
then displaying several results.

Section VI then discusses the analogous construction
and results for a non–perturbative definition of ordinary
JT gravity obtained (as first presented in ref. [3]) by em-
bedding it into a larger framework that it matches per-
turbatively (at high energy) but which supplies it with
non–perturbatively well–behaved low energy physics.

Since most of the results of this paper come from
numerically unpacking the highly non–linear system of
equations (and also using computer algebra to help un-
pack them), some Appendices are included with some (it
is hoped) helpful technical notes and suggestions about
the methods employed, for the reader interested in com-
puting these or other results using this formalism. Ap-
pendix A presents a numerical study of the spectral form
factor of the Airy model (the double–scaled Gaussian
Hermitian matrix model) and compares the results to
the known exact expressions, showing how the e↵ects of
the truncation to a numerical system are extremely well
controlled. This serves as a demonstration of the trust-
worthiness of the numerical results obtained for the JT
gravity and supergravity models in the main body of the
paper. Appendix B 1 describes aspects of solving high or-
der di↵erential equations numerically, and Appendix B 2
describes how to solve for the energies and eigenfunctions
needed to build the spectrum and spectral form factor.
Appendix C lists some important quantities needed in the
body of the paper (the Gel’fand–Dikii di↵erential poly-
nomials) and a recursion relation for getting the higher
order expressions.

There are some brief closing remarks in the final sec-
tion, VII, with thoughts about the potential application
of these methods to other systems.

II. JT GRAVITY LIGHTNING TOUR

Although it is a 2D theory of quantum gravity, by
virtue of a coupling to a scalar, the dynamics of JT
gravity is all on the 1D spacetime boundary. (A good
review of much of this is ref. [15].) The boundary can
change its shape while keeping its total length fixed to be
the inverse temperature �=1/T , the period of Euclidean
time. Meanwhile, the bulk spacetime has constant neg-
ative curvature (the Ricci scalar R=�2). So the theory
is locally AdS2, and the leading spacetime (disc topol-
ogy, i.e., no handles or crosscaps, one boundary) is often
called “nearly–AdS2” [16–19], in the sense that, e.g. in
Poincaré coordinates, the boundary is not a fixed cir-

cle an infinite distance away, but instead a finite loop of
length � that is allowed to change its shape. See figure 3.

Figure 3: The “nearly AdS2” geometry, presented in two
equivalent ways.

At this order the dynamics of the loop is controlled by
a Schwarzian action[17], and the result is:

ZJT
0 (�) =

eS0e
⇡2

�

4⇡1/2�3/2
=

Z
1

0
⇢JT0 (E)e��EdE , (2)

related to the disc order spectral density ⇢JT0 (E) by a
Laplace transform. There is a JT supergravity general-
ization of this result [6, 20]:

ZSJT
0 (�) =

p

2
eS0e

⇡2

�

⇡1/2�1/2
=

Z
1

0
⇢SJT0 (E)e��EdE , (3)

defining a disc order spectral density ⇢SJT0 (E). In each
case, the densities are given by:

⇢JT0 (E) = eS0
sinh(2⇡

p
E)

4⇡2
, and (4)

⇢SJT0 (E) =
p

2eS0
cosh(2⇡

p
E)

⇡
p
E

. (5)

(Henceforth the redefinition
p
2⇢SJT0 !⇢SJT0 will be

done, to adapt JT conventions of ref. [6] to the matrix
model normalization to be used here.) The coupling e�S0

will be denoted ~ in what follows, and indeed it will be
the ~ of a key quantum–mechanical system to appear
shortly. One interpretation of S0 is that it is simply the
leading (T=0, disc topology) contribution to the entropy.
For the ordinary JT case:

S =

✓
1� �

@

@�

◆
lnZ0(�) = S0+

2⇡2

�
�
3

2
ln�+· · · , (6)

This leads to a second reason (beyond the one mentioned
in the introduction) to study JT gravity. It is a model
of the low–temperature (near–extremal) dynamics of cer-
tain higher dimensional black holes and branes (see e.g.
refs. [21–25]). For example, the metric of a charged black
hole in d=4 is well known to become AdS2⇥S2 at T=0,
and the area A of the two–sphere, S2 sets the T=0 en-
tropy: A=4S0. Turning on a small temperature replaces
AdS2 by “nearly-AdS2”, and the horizon area and hence
the entropy gets corrections. The JT gravity model cap-
tures the dynamics of these corrections. (The dynamical

AdS2



Wormholes in higher spin gravity
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We can consider CFTs with higher spin conserved currents  
living at the boundaries.
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Figure 2.1: The topology of the Euclidean wormhole is that of torus⇥interval, or equivalently

annulus⇥circle. The outer and inner tori boundaries have an opposite sense of orientation from

the bulk point of view.

2 Partition function of the Euclidean wormhole

In the context of AdS3/CFT2, Euclidean wormholes have been studied for the pure gravity

case in [18, 26]. The bulk topology of the 3d Euclidean wormhole is T2 ⇥ I, see Fig. 2.1. The

two boundaries of the wormhole are given by two distinct tori, that are connected via the

bulk geometry.

The partition function of the wormhole (often referred to as the ‘wormhole amplitude’)

can be obtained from the gravitational path integral using a constrained instanton approach,

and this method has been further systematized to higher dimensions [27, 28]. In hindsight, it

has been realized that the wormhole amplitude can be bootstrapped by imposing modular

constraints arising from the boundary tori. However, in this method, it is not just modular

invariance alone that fixes the amplitude. Other essential inputs – like smoothness, topological

considerations, boundary orientation and charge conservation – have bulk origins and play a

key role in determining the partition function.

2.1 The modular bootstrap procedure

In this subsection we review the steps involved in the modular bootstrap procedure [26]. It can

be seen from Fig. 2.1 that the tori, living at the boundaries of T2 ⇥ I, have no relative Dehn

twists and are oppositely orientated with respect to each other (i.e. the outward normals point

in opposite directions). This feature implies that modular transformations act oppositely on

the tori. We can define a double moduli preamplitude, Z̃(⌧1, ⌧2), that obeys the following
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We have chosen a convenient normalization constant C, such that simplifications occur later.1

Plugging this back into (2.2) and explicitly evaluate the preamplitude to be

Z̃(⌧1, ⌧2) = C

Z0(⌧1)Z0(⌧2)

(Im(⌧1)Im(⌧2))

|⌧1 + ⌧2|2

�N�1

, Z0(⌧) =
1p

Im(⌧)|⌘(⌧)|2
. (2.17)

Therefore, upto the overall constant, the higher-spin preamplitude is simply the pure gravity

result raised to the (N � 1)’th power. We now turn to the sum over modular images of this

quantity.

Modular sum

We are now in a position to use the preamplitude (2.17) to obtain the full partition function. As

outlined earlier, we need to perform a sum over one-sided modular images of the preamplitude

Z̃. As the Z0(⌧ )’s in (2.17) are modular invariant, the final result for the higher spin Euclidean

wormhole partition function is

Zhs(⌧1, ⌧2) = C Z0(⌧1)
N�1

Z0(⌧2)
N�1

X

�2PSL(2,Z)

✓
(Im(⌧1)Im(�⌧2))

|⌧1 + �⌧2|2

◆N�1

, (2.18)

with Z0(⌧) defined in (2.17). This equation is one of the key results of this paper. Note that

the wormhole amplitude above does not depend on the central charge. Let us now focus on

the sum over modular images

R(⌧1, ⌧2) =
X

�2PSL(2,Z)

✓
(Im(⌧1)Im(�⌧2))

|⌧1 + �⌧2|2

◆N�1

. (2.19)

As alluded to earlier, this Poincaré sum will be performed for fixed spin sectors, i.e. we will

decompose the wormhole partition function as follows

Z(⌧1, ⌧2) =
X

s1,s2

Zs1,s2(⌧1, ⌧2) , (2.20)

where, s1 and s2 denote the specific spin configuration. To this end, we rewrite ⌧1 = z1 + iz2,

and, ⌧2 = w1 + iw2. The integer valued spins, s1 and s2, arise as Fourier conjugate variables

to z1 and w1 respectively. Since R is invariant under independent modular transformations

(and especially the T transformation) on either of the moduli, the Fourier series exists. More

1We are working with the convention C = (2⇡2)�1 for N = 2; this is slightly di↵erent from C = 1 of [18].

9

Spectral correlations between high energy microstates  
can be extracted.



Averaged CFTs

A new class of theories to explore, which are turning out  
to be interesting in their own right.  

hZ(�1)Z(�2) · · · i =
Z

M
[Dµi] Zµi(�1)Zµi(�2) · · ·

<latexit sha1_base64="zRBJuIKG7PNaLIFPERTub8ire7o="></latexit>

!is o"ers an avenue to apply ideas from  
bootstrap, localization, conformal manifolds and matrix models.

What is the description that interpolates between  
an averaged and a non-averaged CFT?



How does information spread  
in a quantum system?



Irreversibility in quantum systems
!e process of relaxation to thermal equilibrium is a  

part of our everyday experience. 

However, it is not always clear how macroscopic phenomena 
emerge microscopic/quantum-mechanical details.

Microscopic laws are time-reversal invariant. 
But, thermodynamic laws aren’t.

How does this irreversible behaviour emerge microscopically? 
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The Lanczos Algorithm

I Take the sequence
)

O, LO, L
2
O, . . .

*
and apply

Gram-Schmidt to orthogonalize {O0, O1, O2, . . . }.

I Explicitly, |O1) := b≠1

1
L |O0), b1 := (O0L|LO0)1/2,

|An) := L |On≠1) ≠ bn≠1 |On≠2) ,

bn := (An|An)1/2 “Lanczos Coe�cients”
|On) := b≠1

n |An) “Krylov vectors”

I The Liouvillian is tridiagonal in this basis

Lnm := (O†
n |L|Om) =

Q

ccccca

0 b1 0 0 · · ·

b1 0 b2 0 · · ·

0 b2 0 b3 · · ·

0 0 b3 0 . . .
...

...
... . . . . . .

R

dddddb

D.C. Mattis, 1981; V.S. Viswanath & G. Müller, The Recursion Method, 2008.

Let O be a simple local operator and  
the Hamiltonian has few-body 

interactions.  
 

However, the e"ect of the operator spreads  
throughout the system at late times. 

Operator growth
Consider the Heisenberg evolution of a local operator

growth is key to understanding the emergence of irreversible macroscopic behaviour, such as

hydrodynamics or thermalization [1–4].

There are several diagnostics for operator growth in quantum chaotic systems. The

key idea is to analyze the Heisenberg evolution of a local operator, O(t) = eiHt
O(0)e�iHt,

and observe the e↵ects it has on the system at late times. A simple application of the

Baker-Campbell-Hausdor↵ identity gives a sum over increasingly nested commutators of the

Hamiltonian

eiHt
O(0)e�iHt = O(0) + it[H,O(0)]�

t2

2
[H, [H,O(0)]]�

it3

6
[H, [H, [H,O(0)]]] + · · · .

This shows that even if O is a simple local operator and the Hamiltonian has few-body

interactions, the e↵ect of the operator spreads all throughout the system as time evolves. One

way this phenomenon manifests itself is by the inability of O(t) to commute with other simple

probe operators; this is captured by the out-of-time ordered correlators (OTOCs) [5–7].

It has recently emerged that a more direct means to characterize the growth of the

operator O can be achieved by using the recursion method [8]. In this framework, the nested

commutators above are defined as operators obtained by applying the Liouvillian, L ⌘ [H, ⇤],

on the operator O. This is the action, Õn = L
n
O. After introducing an inner product in

the space of operators, one can use the Lanczos algorithm to build an orthonormal basis

associated with the set Õn [9]. This basis is known as the Krylov basis. In addition to the

basis, the algorithm yields a set of coe�cients, the so-called Lanczos coe�cients, that encode

transition amplitudes between two orthonormal operators. These coe�cients have specific

growth properties depending on whether the system is non-interacting, integrable or chaotic.

As with the chaos bound for OTOCs [7, 10], the maximal growth of Lanczos coe�cients, is

conjectured to be linear [11].

In the Krylov basis, the Liouvillian acquires a tridiagonal matrix representation, with

the matrix elements being nothing but the Lanczos coe�cients or the transition amplitudes.

Information of the coe�cients also precisely underpins the rate of delocalization of the operator

at late times. This is encapsulated through a measure known as Krylov complexity (or K-

complexity). For chaotic systems with maximal Lanczos coe�cients (such as the SYK model

[12]), this quantity shows an exponential growth. This confirms the physical expectation that

simple operators irreversibly grow into those with higher ‘complexity’. In contrast to OTOCs

or the Eigenstate Thermalization Hypothesis (ETH), the Liouvillian approach transcends the

need of additional probe operators. As a result, one can isolate the truly universal aspects of

quantum information spreading.

In this work, our goal is to utilize the above paradigm to investigate the details of operator

growth in two-diemnsional conformal field theories. Motivated by semiclassical holographic

2

!6#*)'*%>#-%;R$-7&)3(%"X#,,3$3%;1+@#(5

information 
compression



Operator growth in 2d CFTs
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operator growth in 2d CFTs  

spreading along the Young’s lattice
∅

A speci#c path along the lattice saturates  
the conjectured upper bound on operator growth. 
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Simple local operators grow into ones with higher ‘complexity’. 
!is growth in exponential. 
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Research interests: “String geometry”

In the past: model building (construct “realistic” string compactifications) 
 
More recently:

̣ Understanding non-perturbative aspects of QFTs

̣ Explore generic features of quantum gravity
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Geometric engineering

Starting from a theory in  dimensions, obtain -dimensional theory by 
dimensionally reducing on an -dimensional manifold .

D = d + n d
n X

• Geometry / topology of  determine physics in .X ℝd

̣ Geometric restrictions on  constrain possible physics in .X ℝd

Observation: -dim. supergravity theories obtained from string / M-theory are 
highly restricted  feature or bug?

d
↝
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The “Swampland” Program

• Idea / hypothesis: most effective field theories (such as supergravity models) 
cannot be consistently completed in the UV with gravity [Vafa ’06].

• Evidence: restrictive features of string compactifications.

• Predicting+Testing: formulate general principles (independent of string theory) 
that enforce the features.

My current interests: explore such restrictions on gauge symmetries in EFTs with 
gravity (+SUSY) and find rigorous arguments for these.
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Example 1: global structure of gauge groups

• From EFT perspective: a model can have either  or  as gauge group  
( : subgroup of center of ). 

G G/Z
Z G

• Famous example: Standard Model can have , or 
 with ; cannot be tested currently!

SU(3) × SU(2) × U(1)
[SU(3) × SU(2) × U(1)]/Z Z ∈ {ℤ2, ℤ3, ℤ6}

• Question: Are there any physical restrictions on ?Z

• In string compactifications,  tied to geometric properties — not anything 
goes! Can tie these geometric restrictions (at least in higher dimensions) to 
generalized / higher-form symmetries [Gaiotto/Kapustin/Seiberg/Willet ’14].

Z
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Example 2: gauge algebra/group in 6d  SUGRA& = (1,0)

• 6d  gauge theories highly-constrained by chiral anomalies; yet, not 
every anomaly-free model can be constructed in string theory.

& = (1,0)

• Observation: in certain cases, model can only have gauge symmetry  + matter 
 if additional symmetry factor  present (“automatic enhancement”) [Raghuram/

Taylor/Turner ’20].

'
M (

• Can show:  is only anomaly-free subalgebra of flavor symmetry of ; 
No-Global-Symmetries Hypothesis   gauged in theory of gravity.

( (', M)
⟹ (

• “Microscopic” explanation:  by itself is inconsistent with BPS-strings of theory.'
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Ongoing/future works

• Utilize higher-form symmetries in geometric engineering of lower-dimensional 
(super-)conformal field theories from reduction of 6d SCFTs.

• In 4d theories, θ-term related to 1-form center symmetries ➡ interplay 
between axion dynamics and gauge group structure of SM / dark sectors?

• Swampland principles in holographic settings  CFT “swampland”?↝

Thank you!
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Main interests

AdS/CFT

How does spacetime emerge 
from strongly coupled 

physics Properties of  
quantum black holes

What do we learn 
about thermal physics  

in strongly coupled 
QFT

GTT
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Growth of the interior
Black hole interior: an expanding cosmology

volume of maximal Cauchy slice  ∝ Mt

Question: what is the microscopic origin of this “creation of space”?
 3



Growth of the interior
Perturbative corrections in GN are unlikely to terminate this growth

Upshot: We need a quantity that is not thermalizing
for  ∝ e

1
GN times

 4

Candidate: complexity of a state [Susskind et. al.]

The fast scrambler of Eq. 2.1 is a continuous-time Hamiltonian. We will will also be

interested in systems for which time is discrete, for example quantum circuits. A quantum

circuit starts with a collection of K qubits and makes them interact via k-qubit quantum

gates. Random k-local quantum circuits are believed to be fast scramblers.

For k = 2, a random quantum circuit may be constructed as follows. In each time-step

the K qubits are randomly paired and each pair interacts by a randomly chosen gate. The

particular gate set is not very important as long as it is universal. After each step the

qubits are randomly re-grouped into pairs and the process is repeated. This is illustrated

in Fig. 1.

⌧
1 2 3 4

Figure 1: An example of a random circuit with K = 6, k = 2, and depth 4. The six qubits
(black lines) are randomly grouped into three ordered pairs, and then a gate (blue box) is
applied to each pair. At the next time-step, they are randomly re-paired.

Our focus will not be on the state of the qubit system, but rather on the unitary

operator U(⌧) generated by the circuit after ⌧ time-steps. We will be interested in the

complexity of this unitary operator, defined as the number of gates in the minimal quantum

circuit that generates this unitary. We will particularly be interested in how the complexity

evolves with time.

Growth and Saturation

The number of gates that the circuit applied in order to prepare U(⌧) is

Ngates(⌧) =
K⌧

2
. (2.2)

The number of time-steps, ⌧ , is called the depth of the circuit and K is called the width.

The factor of 1/2 in Eq. 2.2 is due to the pairing of qubits, which implies that in each

time-step K/2 gates act.

3

|0⟩⊗K |ψ⟩target

Size of the minimal quantum circuit producing the target



Complexity growth
Conjectured time dependence of complexity in chaotic systems  
[Susskind,Brown-Susskind-Zhao]
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Complexity

Time

|ψ⟩target = e−iHt |black hole⟩

saturation time ∼ eSBH

saturation value ∼ eSBH

∼ Mt



Volume growth
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Volume of interior

Time

|ψ⟩target = e−iHt |black hole⟩

time ∼ eSBH

∼ Mt

…?



Volume growth
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Volume of interior

Time
time ∼ eSBH

∼ Mt

Can be addressed in 2d dilaton gravity!

AdS/CFT dual: random matrix theory 
[Saad-Shenker-Stanford,Maxfield-Tuiraci,Witten]

Classical cigar geometry
Sum over topologies 

[Iliesiu-Mezei-Sarosi]

Saturation due to a new 
cancellation in RMT

[Iliesiu-Mezei-Sarosi]



Volume growth

 8

The saturation is nice, but many puzzles are raised,  
volume of the interior is far from understood…

Thanks!
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The main topics of my research are two-dimensional 
conformal field theories (CFTs) and their applications 
to string theory compactification.

String theory provides a very general and insightful 
way to construct quantum field theories and quantum 
gravity theories in various dimensions. This approach 
goes by the name of geometric engineering.

We will take our starting point to be the 12-
dimensional corner of string theory that goes by the 
name of F-theory. 

F-theory

X12−d

Md−2

C

T2
We split the twelve dimensions into a d-dimensional 
spacetime , and an internal space  of 
dimension 12-d (an elliptic Calabi-Yau manifold). For 
the talk, we choose , but other choices 
are also interesting.

T2 × Md−2 X12−d

Md−2 = ℝd−2

Different choices of internal manifold  give rise 
to different physical theories living on .

X12−d
T2 × Md−2



F-theory

X12−d

C

T2

Spacetime viewpoint: , the 
Nekrasov partition function of the QFT/QG 
theory.

Z(T2 × ℝd−2)

Geometric viewpoint: , a generating 
function which counts holomorphic maps 
from a Riemann surfaces to  (enumerative 
invariants)

Z(X)

X

ℝd−2

Worldsheet viewpoint: , a collection of 
elliptic genera that count the supersymmetric 
excitations of the strings

$C

The key object in this 12-dimensional setup are D3 
branes wrapped on a holomorphic curve C in , 
which give rise to strings on .

X
T2

We can compute three seemingly unrelated quantities:

It turns out that the three quantities are equivalent!

Z(T2 × ℝd−2) = Z(X) = ∑
C

QC ⋅ $C



The worldsheet viewpoint is very 
powerful if one can determine the 
theory describing the strings exactly.


For example, in some cases it may be 
read off by using a brane construction, 
giving rise to a  a 2d quiver gauge 
theory.


In this case supersymmetric 
localization can be used to obtain an 
explicit answer.


Other exact techniques allow exact 
solutions for large classes of theories 
(e.g. blowup equations for 6d SCFTs) 
even if no weakly-coupled description 
of the worldsheet theory exists.

Z(T2 × ℝd−2) = Z(X) = ∑
C

QC ⋅ $C

D2

D2

D2

D2

NS5 NS5 NS5 NS5 NS5 NS5

D6−O6
+

D6−O6 – D6−O6
+

D6−O6
+D6−O6 –

D6−O6 –

Figure 3: Type IIA brane setup corresponding to M5 branes probing Dp+4 a sin-

gularity. The fundamental strings depicted as blue or red wavy lines in this Figure

give rise to fields in the 2d quiver theory.

Figure 4: Non-critical strings in M5 branes probing Dp+4 singularities.
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state of one string coupled to the first (�1) tensor multiplet and one string coupled
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The contour integral can be performed by using the Je↵rey-Kirwan prescription for

computing residues [24]. Similarly, one can compute the elliptic genus for other

bound states of strings.

4 Multiple M5 branes probing an M9 wall

In this section we study the N = (1, 0) six-dimensional theory of N small E8 in-

stantons [21, 22]; upon moving to the tensor branch, this becomes the theory of

N parallel M5 branes in the proximity of the M9 boundary wall of M-theory. The

strings originate from M2 branes that are suspended between neighboring M5 branes

or between the M5 branes and the M9 plane (see Figure 5). Upon circle reduction to

five dimensions with an E8 background Wilson line (which breaks E8 global symme-

try to SO(16)), the theory of N small instantons reduces to the Sp(N) theory with

8 fundamental and 1 antisymmetric hypermultiplets [22]. The instanton calculus for

this five-dimensional theory provides a way to check elliptic genus computations and

will be exploited in Section 4.2.

4.1 Two-dimensional quiver

In order to derive a quiver description for the theory of the strings, it again proves

useful to switch to an equivalent brane configuration within string theory. Let us

begin by discussing N = 1 theory of a single small E8 instanton, whose associated

two-dimensional quiver gauge theory has been worked out in [10]. The quiver was

derived from a Type I’ brane configuration, which arises as follows: upon reduction

– 9 –
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A key property of elliptic genera is their behavior under 
modular transformations that exchange the two cycles 
of the torus.


A weight-  modular form  is a function of the 
parameter  which transforms in a prescribed 
way under modular transformations:


.


The elliptic genera of the strings are generalizations of 
modular forms that can depend in addition on the 
chemical potentials  of the global symmetries (elliptic 
parameters).

k f(τ)
τ = iR2/R1

f(−1/τ) = τkf(τ)

⃗z

In the case where X is a CY threefold, the elliptic genera transform as weight-0 
Jacobi forms:

EC(−1/τ, ⃗z /τ) = e ⃗zT⋅M⋅ ⃗z/2τEC(τ, ⃗z )
where M is the index with respect to the elliptic variables. The index is tightly 
connected to the anomaly polynomial of the string CFT, as well as that of the 
spacetime theory on .T2 × ℝ4

R1

R2

R1

R2



In the case where X is a CY fourfold, the elliptic genera depend on a choice of four-
form flux  of type . Surprisingly in work with Wolfgang Lerche, 
Timo Weigand and Seung-Joo Lee we found that the elliptic genera are quasi-
Jacobi forms, which transform anomalously:

Gn n = 0, − 1, or  − 2

The anomalous modular behavior is tightly connected to the existence of an 
intricate network of holomorphic anomaly equations that relate the elliptic genera for  
different choices of fluxes:

EC,Gn
(−1/τ, ⃗z /τ) = τne ⃗zT⋅M⋅ ⃗z/2τEC,Gn

(τ, ⃗z ) + anomalous terms.

$C,G−1
= 1

2πi
∂z$C,G′ −2

$C,G0
= 1

2πi
∂z$C,G′ −1

+ 1
2πi

∂τ$C,G′ −2

for suitable  and .G′ −1 G′ −2

For a given modular weight and index, the spaces of Jacobi and quasi-Jacobi forms 
are both finite dimensional. This implies that the elliptic genera are uniquely 
determined once one fixes a finite number of Fourier coefficients.



Question: Which (quasi)-Jacobi forms are allowed as elliptic genera?

The answer to this question is connected to the generalized cohomology theory 
 of Topological Modular Forms.TMF∙

Conjecture [Segal-Stolz-Teichner]: The space of deformation classes of 2d QFTs with 
(0,1) supersymmetry coincides with .TMF∙

There exists a map  from  to the ring of modular forms with integer 
coefficients. For a given element of , it determines the elliptic genus (with no 
chemical potentials) of the corresponding QFT.  
  
It is known that this map is not surjective, so not all modular forms can be 
interpreted as elliptic genera. For example, there exists a CFT with elliptic genus

ϕ TMF∙
TMF∙

Z = 2E4(τ)E6(τ)
η(τ)24 = 2 − 480q − 282888q2 − 17058560q3 − … q = e2πiτ

but according to the SST conjecture there exists no CFT with the following elliptic genus:
1
2 Z = 1 − 240q − 141444q2 − 8529280q3 − …



 Thanks!

To determine which Jacobi forms can appear as 
elliptic genera with chemical potentials requires 
understanding the equivariant version of , 
which is not yet fully developed.

TMF∙

Nevertheless, using what is known about equivariant  one can verify that 
elliptic genera of 6d SCFTs are consistent with the equivariant version of the SST 
conjecture.

TMF∙

A question I hope to address is whether the SST conjecture makes nontrivial 
predictions about the features of the elliptic genera of strings in F-theory 
compactification, and therefore about the spectra of the compactified theories.

A related question is whether a combination of SST conjecture, modularity, and 
basic consistency conditions of the worldsheet CFTs such as unitarity can be used 
to classify the lower dimensional theories, without resorting directly to their string 
theory origin.


