A brief introduction

Jasmine Brewer

CERN-TH Retreat

Bozeman, MT

Boulder, CO

Undergrad

2011-2015

University of Colorado Boulder

PhD 2015-2020

far from equilibrium initial state hydrodynamics hadron gas 6 fm/c0.4 fm/c $\sim 1~{\rm GeV}$ \bigcirc \bigcirc (\mathbf{e}) low p_T $\sim 1 \text{ fm/c}$ $\sim 10 \text{ fm/c}$ time

Heavy-ion collisions

Jasmine Brewer (CERN)

energy

energy

Heavy-ion collisions

Research directions

Interpreting jet modification in heavy-ion collisions

Far-from-equilibrium dynamics and thermalization in kinetic theory

Small collision systems: intersection of quenching and equilibration

Jet modification in QCD medium

Interpretation of jet substructure modification JB, Brodsky, Rajagopal [2110.13159]

Ongoing work with Quinn Brodsky

Jet modification in QCD medium

Interpretation of jet substructure modification JB, Brodsky, Rajagopal [2110.13159]

Ongoing work with Quinn Brodsky

Separating quark and gluon jet modification JB, Turner, Thaler [2008.08596]

With Kylie Ying, Yen-Jie Lee, Yi Chen (*forthcoming*)

Jet modification in QCD medium

Interpretation of jet substructure modification JB, Brodsky, Rajagopal [2110.13159]

Ongoing work with Quinn Brodsky

00000000

 \overline{C}

С

Separating quark and gluon jet modification JB, Turner, Thaler [2008.08596]

With Kylie Ying, Yen-Jie Lee, Yi Chen (*forthcoming*)

Delayed probe of QGP with $g \rightarrow c\bar{c}$

CERN HI group project

Jasmine Brewer (CERN)

Equilibration of momentum-space anisotropy

Jasmine Brewer (CERN)

With Weiyao Ke, Li Yan, and Yi Yin (forthcoming) 10

Pushing our knowledge of heavy-ion physics in smaller systems

Heavy-ion collisions

Smaller systems (e.g. p-Pb, O-O) high energy scatterings energy loss? far from equilibrium initial state hadron gas hydrodynamics? ~ few fm/c

Intersection of hard and soft sector very important in small systems

With Aleksas Mazeliauskas and Wilke van der Schee workshop summary: [2103.01939]

Short run of oxygen planned in LHC Run 3

Constructing a pp reference for OO run JB, Huss, Mazeliauskas, van der Schee [2108.13434]

Speculative future directions: interplay of jet quenching and equilibration in kinetic theory

https://aleksas.eu/

Aleksas Mazeliauskas About me Research projects Code Publications Talks Blog Contact CV

Aleksas Mazeliauskas

Theoretical Physicist

Theoretical Physics Department, CERN

Aleksas Mazeliauskas

['aːlɛksɐs mɐzɛ'lʲæu·skɐs]

[AH-lexas ma-zeh-LYOW-skas]

I am a theoretical physicist working on **many-body phenomena** emerging from fundamental interactions of elementary particles.

In my research I connect models of **nuclear**, **hadronic** and **particle physics** with methods of relativistic hydrodynamics, statistical physics and out-of-equilibrium dynamics to study the **hot and dense nuclear matter** created in high-energy hadron collisions. My work has contributed to a better understanding of fundamental states of matter, thermalisation of isolated quantum systems, and how a fluid-like behaviour emerges from a relatively small number of constituents interacting via the strong force.

I work at Theoretical Physics department at CERN, Switzerland. Previously I was a postdoctoral researcher at **Heidelberg University**, Germany. I had a joint postdoctoral research position in the groups of Prof. Dr. Jürgen Berges and Priv-Doz. Dr. Stefan Electroger at the Institute for Theoretical Physics under the

My route from Lithuania to CERN (via UK, USA and Germany)

QCD thermalization: ab-initio approaches and interdiciplinary connections Berges, Heller, AM, Venugopalan Rev. Mod. Phys (2021), arXiv:2005.12299

- Effective descriptions of QCD: Classical Yang-Mills, QCD kinetic theory, hydrodynamics
- Simplification of non-equilibrium evolution ⇒ attractors pre-scaling AM, Berges, PRL (2019), entropy production, Giacalone, AM, Schlichting, PRL (2019)

Significant loss of detail occurs well before thermalization.

Light-ion collisions at LHC

Puzzle: many heavy-ion phenomena observed in pp and pPb collisions.

New collision system - upcoming special run of oxygen

- \blacksquare Opportunities of OO and $p{\rm O}$ collisions at LHC
- 5-day virtual workshop Feb 4-10, 2021.
- Summary document: arXiv:2103:01939
- Successful oxygen test at LINAC 3 in May 2021

The workshop demonstrated the community interest and crystallized open questions and challenges.

Collective flow in small collision systems

Describe small droplets of QGP with kinetic theory of quarks and gluons

Boltzmann eq.:
$$\partial_t f + \underbrace{\frac{\mathbf{p}}{|p|} \cdot \nabla f}_{\text{expansion}} = -\underbrace{\mathcal{C}_{2\leftrightarrow 2}[f] - \mathcal{C}_{1\leftrightarrow 2}[f]}_{\text{in-medium QCD collisions}}$$

In small collision systems expect only few interactions.

We estimated elliptic flow generation after single elastic rescattering.

Kurkela, AM, Törnkvist, arXiv:2104.08179 Aleksas Mazeliauskas

Discovering high- p_T parton rescattering in oxygen-oxygen collisions

Perturbative QCD spectra modified by secondary scatterings.

 \blacksquare Compare spectra in pp and OO at the same collision energy.

Huss, Kurkela, AM, Paatelainen, van der Schee, Wiedemann, (PRL, PRC) 2007.13754, 2007.13758

Short run \Rightarrow no pp reference. Construct pp spectra or use mixed energy ratio.

Brewer, Huss, AM, van der Schee, 2108.13434

Aleksas Mazeliauskas

Estimating uncertainty of the missing high order terms

Given cross-sections Σ_n at LO, NLO, N2LO,... what is $\Delta \Sigma_n$?

$$abc$$
-model : $-ca^n < \frac{\Sigma_n - \Sigma_{n-1}}{\Sigma_0} - ba^n < ca^n$.

Perform Bayesian inference of the hidden parameters and estimate $\Delta \Sigma_n$.

pQCD theory uncertainties with clear statistical interpretation.

Aleksas Mazeliauskas

aleksas.eu

Summar: LHC phenomenology with pp, heavy and light ions

- Collective flows via single elastic scattering Kurkela, AM, Törnkvist, 2104.08179
- Signals of high- p_T suppression in OO collisions TH team: Huss, Kurkela, AM, Paatelainen, van der Schee, Wiedemann, PRL, PRC, 2007.13754, 2007.13758 TH team: Brewer, Huss, AM, van der Schee, 2108.13434
- Charmed hadron spectra in heavy ion and light ion collisions Andronic, Braun-Munzinger, Köhler, Mazeliauskas, Redlich, Stachel, Vislavicius, JHEP (2021), 2104.12754
- Bayesian estimates of missing higher order terms. TH team: Duhr, Huss, AM, Szafron JHEP (2021), 2106.04585
- Space-time structure of parton showers (ongoing work with heavy-ion group)
- Other interests: soft pion production, Λ polarization.

My past research before joining HI at CERN

Park, Sohyun

Fields of interest

Cosmology and Astroparticle Physics Gravity Heavy Ion Physics Quantum Field Theory

Quantum loop effects during inflation

• How scalars and gravitons interact in de Sitter background? 1101.5804 & 1109.4187 SP, Woodard 1403.0896 Leonard, SP, Prokopec, Woodard 1510.03352 SP, Prokopec, Woodard 1409.7753, 1704.05880, 1708.01831 Boran, Kahya, SP

Phenomenology of nonlocal gravity

- How structure grows in nonlocal gravity? 1209.0836 & 1310.4329 S. Dodelson, SP 1608.02541 SP. Shafieloo 1901.07832 Amendola, Dirian, Nersisyan, SP 1711.08759 SP
- How GWs propagate in nonlocal gravity? 1811.04647 Chu, SP
- Is the nonlocal model stable (no ghost excitation)? 1809.06841 SP. Woodard
- Is there a bouncing solution in nonlocal gravity? 1905.04557 C. Chen, P. Chen, SP
- How QNMs behave in nonlocal gravity?

2101.06600 C. Chen, SP

My current research at CERN

Phenomenology of heavy ion collisions

- Dynamics of light (anti)-nuclei in QCD matter Jasmine, Aleksas, SP, Urs
- Spatio-temporal ordering of partonic fragmentation in QCD medium Maximilian, Jasmine, G.M. Innocenti, Aleksas, SP, Wilke, Urs

• Electromagnetic radiation in ALICE-3

"Bremsstrahlung photons from stopping in heavy-ion collisions" PRC 104, 044903, arXiv:2107.05129 SP and Urs A.Wiedemann

Bremsstrahlung from stopping

- Pb-ions are 82+ \rightarrow each PbPb collision decelerates a net-charge 164+
- Classical Electrodynamics: charge deceleration photon bremsstrahlung
- Why is this interesting?
 - Robust prediction but never measured -> experimental challenge (could serve to illustrate novel opportunities of a novel detector)
 - Bremsstrahlung sensitive to the degree of longitudinal stopping
 - Longitudinal stopping determines rapidity distribution of net electric charge (complementary access to longitudinal initial conditions)

A detector at RHIC proposed but never realized

- This idea is not new but actually is as old as the field of heavy-ion physics: Kapusta 1977; Bjorken and McLerran 1985
- Calculations of classical electromagnetic bremsstrahlung in the late 1990s; The effect is measurable; Proposed a detector at RHIC but it was never realized Jeon, Kapusta, Chikanian and Sandweiss, 1998

Image Credit: Jack Sandweiss Memorial by Evan Finch at SQM 2021

A next-generation LHC heavy-ion experiment 1902.01211

- A next-generation ALICE detector based on ultra-thin silicon technology: ALICE-3
- We adapted RHIC studies of late 90's to the kinematics of LHC.
- We asked: what acceptance ALICE-3 should have

in order to measure bremsstrahlung photons in PbPb @ LHC?

Classical bremsstrahlung

• The intensity of photons of energy ω in direction n from charge current $\mathbf{J} = \mathbf{J}_{+}^{(in)} + \mathbf{J}_{-}^{(out)} + \mathbf{J}_{-}^{(out)}$

$$\frac{d^2 I}{d\omega d\Omega} = |\mathbf{A}|^2, \ \mathbf{A}(\mathbf{n}, \omega) = \int dt \int d^3 x \mathbf{n} \times (\mathbf{n} \times \mathbf{J}(\mathbf{x}, t)) e^{i\omega(t - \mathbf{n} \cdot \mathbf{x})}$$
Eq. (14.67) in Jackson, Classical Electrodynamics (1998) 3rd ed.

• Incoming current: incoming charges with projectile rapidity y_0 along the beam direction z

$$J_{\pm}^{(in)}(\mathbf{x},t) = \pm Z \, e \, \mathbf{v_0} \, \rho_{\rm in}(r) \, \delta(z \mp \mathbf{v_0} t) \, \Theta(-t)$$

 $ho_{
m in}(r)$: incoming charge density in the transverse plane

• Outgoing current at shifted velocity v(y) after collision at time t=0

$$J^{(out)}(\mathbf{x},t) = \Theta(t) \int_{-y_0}^{y_0} \rho(\mathbf{r},y,t) \, v(y) \, \delta\left(z - v(y)t\right) \, dy \qquad -v_0 < v(y) = \tanh y < v_0$$

Modelling the charge-rapidity distribution

 $\rho(\mathbf{r}, y, t) = \rho_{\rm in}(\mathbf{r}) \rho(y) \Theta(t)$ • Assume

• The intensity of photons

$$\frac{d^2 I}{d\omega d\Omega} = \frac{\alpha Z^2}{4\pi^2} \sin^2 \theta \left| F(\omega R \sin \theta) \right|^2 \left| \left[\int dy \frac{v(y)\rho(y)}{1 - v(y)\cos\theta} - \frac{2v_0^2\cos\theta}{1 - v_0^2\cos^2\theta} \right] \right|^2$$
Transverse form factor: $F(\omega R \sin\theta) = \int d^2 r_{\perp} \rho_{\rm in} (r_{\perp}) e^{-i\omega \mathbf{n} \cdot \mathbf{r}_{\perp}} = \frac{3}{q^2} \left(\frac{\sin q}{q} - \cos q \right), \ q = \omega R \sin \theta$
Applicability of classical formula

- Applicability of classical formula
 - For soft and collinear photons, i.e., $q = \omega R \sin \theta \lesssim 1$ \bigcirc the transverse profile of the charge distribution is not resolved
 - For Lorentz contraction $\gamma_{\rm LHC} \approx 2700$ 0 longitudinal structure is resolved only for photon energies $1/\omega \gg 0.005 \ {\rm fm/c}$

Classical formula is sufficient for soft/collinear photons that do not resolve internal structure. 0

Numerical results: Photon number distribution

• Number of photons radiated per unit phase space

$$\frac{d^2N}{dp_T d\eta} = \frac{1}{p_T \cosh \eta} \frac{d^2I}{dp_T d\eta}$$

• Number spectrum as a function of pT in pseudo-rapidity bins

• Number of photons in pT bins

Background photons

- Photons do not come only from electromagnetic bremsstrahlung
- π^0 decay photons are expected to be the dominant background
- How many? How are they distributed?

Can bremsstrahlung photons be separated from background?

• Signal-to-background

$$0.1 \lesssim \frac{S}{B} \lesssim 1$$
 for $p_T \lesssim 50 \,\mathrm{MeV}$ and $\eta \gtrsim 3$

• characteristically different pT dependence

• characteristically different centrality dependence

$$\frac{d^2 N^{\rm bgd}}{dp_T d\eta} \propto N_{\rm part} \quad {\rm vs} \quad \frac{d^2 N^{\rm brems}}{dp_T d\eta} \propto Z^2 \propto N_{\rm part}^2$$

Conclusion

- ALICE 3 is a new detector to have acceptance at very low-pT and rather forward rapidity.
- We asked: what acceptance ALICE-3 should have in order to measure bremsstrahlung photons in PbPb @ LHC?
- Our answer is: $\eta\gtrsim 3$ $p_T\gtrsim 10~{
 m MeV}$
- Characteristically different pT & centrality dependence may help to separate bremsstrahlung photons from background photons.

