TI-LGAD characterization using TCT setup at UZH

A. Bisht¹, G. Borghi¹, M. Centis Vignali¹, B. Kilminster², A. Macchiolo², M. Senger² this is me

¹Fondazione Bruno Kessler (FBK) ²Universität Zürich (UZH)

39th RD50 Workshop – Valencia – 18 Nov 2021

2

LGAD

- Low Gain Avalanche Detector (LGAD)
- Solid state diode:
 - Very thin active thickness ~40 μ m.
 - Gain layer provides gain ~10.
 - Time resolution for 1 MIP ~10-30 ps.

*Cartoon adapted from Ferrero, M., Arcidiacono, R., Mandurrino, M., Sola, V., Cartiglia, N., 2021. An Introduction to Ultra-Fast Silicon Detectors: Design, Tests, and Performances. CRC Press. https://doi.org/10.1201/9781003131946

LGAD technology and (x,y,z,t) tracking

- "Plain LGAD": mature technology.
 CMS ETL
 - Atlas HGTD

- Issue: Fill factor
 - Inter-pixel distance (IPD) is on the order of 20-50 μm.¹

¹Ferrero, M., Arcidiacono, R., Mandurrino, M., Sola, V., Cartiglia, N., 2021. An Introduction to Ultra-Fast Silicon Detectors: Design, Tests, and Performances. CRC Press. https://doi.org/10.1201/9781003131946

LGAD technology and (x,y,z,t) tracking

For small pixels (pitch~50 µm or less) smaller IPD values (~2 µm or less) are required to get a reasonable fill factor (~90 % or more).

*These cartoons show a simplified/idealized picture and are meant for visualization purposes.

5

Valencia

RD50 Workshop

39th

Senger (UZH)

18 Nov 2021

The "RD50 TI-LGAD Project"

 Goal: "Design and production of TI-LGAD with small pixels (<= 100 um) and high Fill Factor (> 80%)."¹

The "RD50 TI-LGAD Project"

• 2.

Goal: "Design and production of TI-LGAD with small pixels (<= 100 um) and high Fill Factor (> 80%)."1

/alencio

¹G. Paternoster. "Latest Developments on Trench-Isolated LGADs." Presented at the 35th RD50 Workshop, CERN, November 19, 2019. https://indico.cern.ch/event/855994/contributions/3637012/.

TI-LGAD samples @ UZH

A total of 96 devices distributed according to the following diagram:

- 1 single thickness (45 µm).
- 1 single PGAIN dose (B).
- 3 wafers (7, 11 and 16).
- 2 trench processes (P1, P2).

- 3 trench depths (D1<D2<D3).
- 2 contact types (ring, dot).
- 2 pixel borders (V2<V3).
- Number of trenches (1, 2).

TCT setup @ UZH

- Particulars Scanning TCT:
 - Infrared laser (1064 nm).
 - Laser spot Gaussian with σ ~ 9 μ m.
 - Laser splitting+delay¹ with optic fiber for timing measurements provides two pulses separated by 100 ns.

Laser Optic fiber

- Custom made passive readout board.
- Cividec TCT amplifier.
 - 10 kHz 2 GHz, 40 dB.
- Oscilloscope WaveRunner 9254M.
 - 4 GHz, 40 GS/s.
- Keithley 2470 bias voltage source.

¹https://msenger.web.cern.ch/laser-delay-system-for-the-scanning-tct/

Samples geometry and laser scans

- 1D linear scan.
- From metal to metal crossing through the window.
- Two geometries:
 1) 2×2 big pixels.
 2)4×4 small pixels.
 - Window is identical in both.

Laser scans

- Trenches provide good isolation.
- Shared signal in the middle is shared due to the size of the laser spot.
- Qualitative similar behavior for all devices.

Laser scans

- Steps of 1 µm. •
- Example from a random . ~ 50 events at each position. •
- Metal-silicon interface as reference: •
 - Check laser shape/size.
 - Distance scale correction (2-5 %).

250p

200p

150p

100p

50p

100µ

200u

charge (V s)

Collected

scan

12

Pad, n pulse —____ left. 1

----- left. 2

----- right. 2

left

----- right

n pulse

---- 2

300u

Pad

— right, 1

Laser scans

Go to next slide 📾

M. Senger (UZH) - 39th RD50 Workshop - Valencia

18 Nov 2021

Inter-pixel distance (IPD)

- IPD: Distance between 50 % of normalized collected charge of each channel.
- Linear interpolation, not "S function".
 - Observed deviations from "S", different for each design pattern and dependent on the bias voltage.

Scanning at different bias voltages

Scanning at different bias voltages

Scanning at different bias voltages

Measured IPD for each design pattern

Measured IPD for each design pattern

- Wafer 16 and 7 are better than wafer 11:
 - Deeper trenches better than shallow. (Or "trench process" P2 is better than P1?)
- Pixel border V2 (smaller) is better than V3 (longer).
- Contact type "ring" better than "dot" (unexpected to me).

IPD (m)

*These cartoons show a simplified/idealized picture and are meant for visualization purposes.

Where are TI-LGADs?

Wafers 7 and 16 with pixel border V2 and contact type "ring" and both 1 and 2 trenches have IPD < 4 μm @ 200 V. \checkmark

Valencio

Workshop

39th

Senger (UZH)

Ś

2021

Nov

IV curves

⇒ All devices with "2 trenches" & "pixel border V3" & "contact type ring" seem to go into breakdown at very low voltages (see plot). Valencia

39th RD50 Workshop

Senger (UZH)

Ś

Nov 202

Time resolution

- Constant fraction • discriminator.
- Time resolution vs laser • position.
 - Time resolution = $\frac{o_{\Delta t}}{\sqrt{2}}$
- Within window (laser in silicon): • - ~ 10 ps 🗸

Outside window (laser in metal):

> 10 ns because the software is measuring noise 🗸

Time resolution @ different bias voltages

Time resolution for each design pattern

Irradiation campaign

How do TI-LGADs behave after irradiation?

- Neutrons & protons:
 - 15×10¹⁴n_{eq}/cm²
 - $25 \times 10^{14} n_{eq} / cm^2$
 - 35×10¹⁴n_{eq}/cm²
- Re-measure IPD & time resolution with TCT setup.
- Setup has been adapted to reach low temperature (-25 °C).

26

Conclusions

- Systematic characterization of TI-LGAD devices using TCT setup was done:
 - Inter-pixel distance (IPD) measured according to "the 50 % of charge criterion".
 - Time resolution was measured (without Landau contribution).
- Results look promising:
 - IPD < 4 μm for some of the design patterns allow for fine segmentation.
 - Time resolution similar to "plain-LGAD".

\Rightarrow <u>TI-LGAD is a promising candidate towards 4D-pixels</u>.

- Irradiation campaign was presented:
 - Results will be shared soon, stay on tune!

Valencia 39th RD50 Workshop Senger (UZH) Nov 2021

IPD vs injected charge?

- V_{bios} = 170 V.
- Varied "Laser DAC" around 2000 (see previous slide).
- Measured only for this single device.

Signal acquiring and processing

- Events are processed individually.
- Signals processed online by custom made software¹.
- Only features (not waveform) of each event are recorded.
- Averaged waveform also recorded.

31

https://github.com/SengerM/lgadtools