
L. Castillo García, C. Grieco, S. Grinstein - 18th November 2021

Performance studies of CNM LGADs on Si-Si and epitaxial wafers 

irradiated to extreme fluences up to 1e16 neq/cm2
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Motivation

• Low Gain Avalanche Diode (LGADs) sensors 

o Originally developed by CNM to explore the possible improvement towards radiation 

hardness (through charge multiplication)

o Later proposed for timing applications

- Achieving a time resolution of about 30 ps before irradiation

• Interest to study LGADs and their performance at high fluences beyond 1015 neq/cm2

o Performance remains challenging due to degradation of the gain layer

o Investigate new doping materials (B+C, Ga), substrates and new geometries

o Deliver thin sensors providing good time resolution, fine segmentation, radiation hardness

• ATLAS and CMS experiments have chosen the LGAD technology for the High 

Granularity Timing Detector (HGTD) and for the End-Cap Timing Layer (ETL)

o ATLAS : 4 fC at 2.5×1015 neq/cm2 at (max) 600 V, 50 ps time resolution (talk)

o CMS : 10 fC at 1.5×1015 neq/cm2 at (max) 600 V, 50 ps time resolution (talk)
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https://indico.cern.ch/event/797047/contributions/4455187/
https://indico.cern.ch/event/861104/contributions/4514661/


Radiation damage

• Silicon pixel detectors are especially important for the precise determination of tracks and 
vertices, enabling the selection of interesting events through the identification of b-jets (b-tagging)

• Particle accelerators are improved to further probe the energy frontier delivering higher energies 
and increasing the number of collisions per unit time

• At High Luminosity LHC (HL-LHC):

o The number of collisions per bunch crossing will be increased 

o The instantaneous luminosity will be approximately a factor of ~5 higher than the LHC nominal values

o Several LHC experiment sub-systems will require an upgrade in order to cope with the high rate, hit 
occupancy and radiation environment

• Two main types of radiation damage:

o Bulk damage due to Non Ionizing Energy Loss (NIEL)

- Effective doping concentration, acceptor removal, leakage current, trapping

o Surface damage due to Ionizing Energy Loss (IEL)

- Accumulation of positive charge 

• New solutions have to be found for the silicon sensors and 
the associated front-end electronics
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CNM LGAD technologies

• CNM Run 12916 AIDA2020

o 50 µm active thickness

o Si-on-Si wafers

o 𝑉𝑔𝑙~38𝑉, 𝑉𝑓𝑑~42𝑉, 𝑉𝑏𝑑~85𝑉 at room temperature

o B dose: 1.8×1013 atoms/cm2

• CNM Run 13002 EPI (2021)

o 6” epitaxial wafers

o 55/525 µm

o Substrate resistivity = 0.001-1 Ωcm

o Epi-layer resistivity ~ 200 Ωcm 

o 𝑉𝑔𝑙~30𝑉, 𝑉𝑓𝑑~35𝑉, 𝑉𝑏𝑑~400𝑉 at room temperature

o B dose: 2×1013 atoms/cm2
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1.3mm

talk@37th RD50 Workshop talk@RD50 Workshop

https://indico.cern.ch/event/896954/contributions/4106303/
https://indico.cern.ch/event/896954/contributions/4106303/


Electrical characterization 
(I-V and C-V room temperature at CNM)
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Electrical characterization
(I-V -30 °C)

• Early breakdown due to higher dose of wafer implant 

wrt old B run

• Breakdown is happening at higher voltages
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AIDA2020 𝑻 = −𝟑𝟎°𝑪 EPI 𝑻 = −𝟐𝟎°𝑪

Irradiated 

devices



Operational voltage

• The limitation on operating voltages is given by auto-triggering studies

• LGADs at high bias voltages present self pulses (w/o external source)

• We need to make sure that a coincidence event from 

both tested sensors is a real one, not a fake  need to 

ensure sensor is not auto-triggering

• Auto-triggering events have waveforms that are identical 

to real events

• Estimate the frequency of these events

• Trigger on different threshold values for different bias 

voltages (here only showing 10 mV~5σnoise)

• Maximum voltage with an acceptable auto-triggering rate 

of 1 kHz

• Subsequent measurements are taken up to bias voltage without auto-triggering
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𝑻 = −𝟑𝟎°𝑪



Auto-triggering studies

• Unirradiated sensor present a high auto-triggering rate at 
low voltage which hinders operating it at cold 
temperature

• Only marginal performances can be achieved before 
irradiation

• All the fluences present enough room to operate between 
𝑉𝑔𝑙 and 𝑉𝑏𝑑

• No detectable auto-triggering up to 770 V for 1015 neq/cm2

and up to 720 V for 1016 neq/cm2 but high current, not 
possible to go higher in voltage

9

CNM Run 12916 AIDA2020                                            CNM Run 13002 EPI 
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Charged particle measurements

• Set-up

o 90Sr source, custom read-out boards, oscilloscope

o Temperature control down to -30 °C with climate chamber

o Avoid condensation by providing dry air 

o Different oscilloscope for waveform capture

o Reference and DUT mounted back-to-back

o DAQ system can be run remotely

• Measurements:

o Collected charge

o Time resolution
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90Sr source

e-

3D printed support

Read-out boards

More info: @37th RD50 workshop talk

https://indico.cern.ch/event/896954/contributions/4106452/


LGAD analysis framework

• Waveform processing performed with LGADUtils framework v1.4 (C++ based) developed at IFAE by E. L. 
Gkougkousis (documentation, gitlab)

• Steps:

o Conversion oscilloscope ASCII/binary data to Root ntuple
with raw waveform information

o Merging with track ntuple from EUTelescope (in test beam)

o Waveform analysis

- Determination of pulse polarity, signal start and 
stop, determine if the pulse is noise or signal

- Calculate noise level and pedestal using Gaussian 
fit, pedestal subtraction, re-calculation of start and 
stop of the signal

- Compute charge, rise time, time at different CFD 
fractions, ...

o User analysis

- Efficiency

- Timing
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LGAD signal

start

Noise and pedestal calculation

stop

https://indico.cern.ch/event/782573/contributions/3265510/attachments/1777147/2889703/Timing.pdf
https://gitlab.cern.ch/egkougko/lgadutils


LGAD collected charge

• At each bias voltage point:

o For each recorded waveform (event), after pedestal substraction, the charge is calculated as the integral of the LGAD signal 

area

o A charge distribution is built

o The collected charge is defined as the MPV value of the Landau-Gauss fit
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Collected charge

• Unirradiated sensor results are biased by the 
high auto-triggering rate

o Not enough room to operate the sensor at -30°C

• 2.5×1015 neq/cm2 irradiated sensors reach 4 fC for bias voltage higher 
than 680 V

• Up to 1014 neq/cm2 irradiated sensors a high collected charge (>10 
fC) is achieved 

• For 1015 neq/cm2 irradiated sensor 4 fC is reached at BV>700 V

• No detectable gain for 1e16 n up to 720 V

• Tests of intermediate fluences (5×1014, 8×1014, 2×1015, and 5×1015

neq/cm2) show that fluences above 1015 do not have gain
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Limit @ HL-LHC: 4 fC

𝑻 = −𝟑𝟎°𝑪
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LGAD time resolution (ref. LGAD)

• Time walk effect due to signals with different amplitude reaching a single discriminator threshold is

corrected using Constant Fraction Discrimination (CFD) method

o Find optimal CFD fraction achieving the minimum time resolution for the reference LGAD

o Build a 2D map of time resolution as a function of the CFD fractions ( 𝑓𝐶𝐹𝐷𝐷𝑈𝑇1, 𝑓𝐶𝐹𝐷𝐷𝑈𝑇2) 

- Time difference distribution calculated as:

- Time resolution is defined as ൗ1 2
the standard deviation of the Gaussian fit

• Reference LGAD calibrated in the lab at -30 °C

o Best time resolution achieved is 35.7 ps for 𝑓𝐶𝐹𝐷𝑟𝑒𝑓=15%
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∆𝑡 = 𝑡𝐷𝑈𝑇1(𝑓𝐶𝐹𝐷𝑖) − 𝑡𝐷𝑈𝑇2(𝑓𝐶𝐹𝐷𝑗)

fixed 

discriminator

Calibration of reference LGAD



LGAD time resolution (DUT)

• Find optimal CFD fraction achieving the minimum time resolution for the DUT

o Build a 2D map of time resolution as a function of the CFD fractions ( 𝑓𝐶𝐹𝐷𝐷𝑈𝑇 , 𝑓𝐶𝐹𝐷𝑟𝑒𝑓 𝐿𝐺𝐴𝐷) 

- Time difference distribution calculated as:

- Time resolution is defined as:

o Fraction defined by the dominant contribution

- Unirradiated sensor  Landau fluctuations of charge deposition

- Irradiated sensor  jitter (higher threshold)

15

∆𝑡 = 𝑡𝐷𝑈𝑇(𝑓𝐶𝐹𝐷𝑖) − 𝑡𝑟𝑒𝑓 𝐿𝐺𝐴𝐷(𝑓𝐶𝐹𝐷𝑗)

𝜎𝐷𝑈𝑇 = 𝜎𝑓𝑖𝑡
2 − 𝜎𝑟𝑒𝑓 𝐿𝐺𝐴𝐷
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• Unirradiated sensor cannot be operate at higher 

voltage due to auto-triggering, marginal performances 

in timing

• Irradiated sensors achieve a time resolution lower than 

40 ps at all level of neutron irradiation

• A time resolution < 50 ps is achieved for sensor 

irradiated up to 1015 neq/cm2

• For fluences lower than 8×1014 neq/cm2 the sensors 

achieve a time resolution below 40 ps for the higher 

voltages

Time resolution
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Limit @ end HL-LHC: 70 ps

Limit @ start HL-LHC: 50 ps

𝑻 = −𝟑𝟎°𝑪
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Time resolution vs Collected charge

• LGADs exposed to neutron fluence up to 2.5×1015 neq/cm2

• A charge of 4 fC can be reach up to a fluence of 2.5×1015 neq/cm2, providing a time resolution better than 70 ps

per hit

• The performance of LGADs from the two technologies is similar, AIDA2020 run achieve better time resolution

• The time resolution for the largest fluence is fully dominated by the electronics jitter
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Transient Current Technique (TCT)

• Set-up:

o Time-resolved current waveforms introduced by drift charge inside a sensor

o Current proportional to the number of charges, drift velocity and weighting
field of the readout electrode

o Pulsed laser source (spot size = 10 µm) mimics the behavior of a charged particle

- Red (𝜆1 = 640 𝑛𝑚) and Infra-Red (𝜆2 = 1040 𝑛𝑚)

o Possibility to perform room temperature and cold measurements (till -20 °C)

- Cooling system with Peltier + Chiller

- Dry environment

o LGAD assembled in a metal box mounted on the movable X-Y stage

o Set-up is remotely controlled

o Detector illuminated from the back with IR laser

- To perform TCT LGADs need to have an opening in the metallization layer

• Aim of measurements:

o Compare behaviour before and after irradiation

- Gain for single pad devices 

- IP gap for 2×2 arrays

18
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AIDA2020 results: IP gap

• Measure IP gap by scanning the area between two pads 

o Record 1k waveforms for each X-Y position

o Pad A and B are readout through two different lines 

o Build a 2D map of collected charge as a function of the laser position

o Make projection for each pad and fit it with an S-curve 

o IP is defined as:
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Scanned area for IP gap
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B
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𝐼𝑃 𝑔𝑎𝑝 = 𝑥𝐴 50% − 𝑥𝐵 50%

• Unirradiated sensor not operable high current and early breakdown

• Low fluences

o Carriers generated underneath the gain layer end their drift on JTE and don’t undergo 
multiplication

• High fluences (>6×1014 neq/cm2):

o Some gain from carriers drifting to the JTE, a smaller IP has been measured

o The IP gap is larger at higher bias voltages 

• Results are compatible with previous results on LGADs from other vendors 
(slides@38th RD50 Workshop) and in agreement with their simulation 

𝑻 = −𝟐𝟎°𝑪

https://indico.cern.ch/event/1029124/contributions/4410387/attachments/2268538/3852193/Skomina-IP-Measurements.pdf


Summary and outlook

• AIDA 2020 Boron (Run 12916)

o Unirradiated LGAD does not show enough room to operate between 𝑉𝑔𝑙 , 𝑉𝑓𝑑 and 𝑉𝑏𝑑 voltages and early breakdown

o Good performances in collected charge and time resolution achieved for fluences up to 2.5×1015 neq/cm2

• Epitaxial Boron (Run 13002)

o Unirradiated LGADs show enough room to operate between 𝑉𝑔𝑙 , 𝑉𝑓𝑑 and 𝑉𝑏𝑑 voltages and low auto-triggering rate

o LGADs irradiated to a fluence of 1015 neq/cm2 work but at relative high bias (700 V), due to low gain and low resistivity of 

wafer

• Next steps

o A new common ATLAS/CMS run will be ready by the end of this year

- Epitaxial run with C implanted in the gain layer on some wafers
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THANK YOU FOR YOUR ATTENTION
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Detection technology: LGAD

• Low Gain Avalanche Detectors (LGADs) originally developed by CNM

o n-p silicon planar detector + multiplication layer that amplifies the signal

o High E field 

o Moderate internal gain (10-50)

o Typical rise time 0.5 ns

o Excellent time resolution <30 ps before irradiation

• R&D programme to deliver thin sensors to provide the required time 

resolution (30 ps per track), fine segmentation, radiation hardness

o New doping materials, substrates and new geometries

o Prototypes tested from CNM, HPK, BNL, FBK
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CNM LGAD for HGTD HPK LGAD for HGTD



Why timing is so important?

• High-Luminosity phase of LHC (HL-LHC)

o Instantaneous luminosities up to L ≃ 7.5×1034 cm−2 s-1 (×5 current Linst)

- Luminosity = number of collisions in a detector per cm2 and per second

o Pile-up: < 𝜇 > = 200 interactions per bunch crossing  1.5 vertex/mm on average

o Vertex reconstruction and physics objects performance will be significantly degraded 

o Push to higher luminosity  timing is more and more important

- Using timing information easier to reconstruct vertices
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Basic principles

• Study on proton and neutron irradiated CNM LGADs

o Boron implanted (R10478 W4)

o Boron implanted + Carbon enriched (R10478 W5)

o Gallium implanted (R10924 W6)

• We need to make sure that a coincidence event from 

both tested sensors is a real one, not a fake  need to 

ensure sensor is not auto-triggering

• Trigger on different threshold values for different bias 

Voltages (here only showing 10mV)

• No radioactive source or other source of events

• Collect at least 1k events and estimate period (frequency)

• Noise events have waveforms that are identical to real 

events
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Preliminary results

• Beta source set-up

o DUT:W6S1080 6e14 p @-560 V (-30 C)  data taking until -700 V

o Ref: W4S1022 unirradiated @-80 V (-30 C)
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22.9 fC

0.86 fC

𝜎𝐷𝑈𝑇 =64.8 ps (𝜎𝑟𝑒𝑓 =35.7 ps)  54.1 ps



Contributions to timing

• Time resolution:

o Landau term <25 ps

- Reduce for thin sensors: 35-50 𝜇m

o Jitter term <15 ps and time walk term <10 ps

- Low noise and fast signals

o Digitization granularity ~5 ps

o Clock distribution <15 ps

• Time walk corrections on beam test data using 

the Constant Fraction Discriminator (CFD) technique

o Considering the time at a fraction of 50% of the amplitude 

(typical fraction is 20%)
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+ 𝜎𝑐𝑙𝑜𝑐𝑘
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Assembly Sensor + Readout board

• 50 sensors (unirradiated, p- and n-irradiated) tested so far

• LGAD readout boards with trans-impedance first stage amplifier

• Voltage second stage amplifiers with hermetic E/B cover design
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• Sensor attached to board using 

double-sided conductive tape

• Amplifier input coupled to 

metallization layer via wire bonds

• Guard ring grounded

• Gain of ~10

• 2 GHz Bandwidth 

LV input

Amplifier output

CALIB input

HV input

Second stage 

amplifier 

output to 

oscilloscope

single pad readout board



Data analysis tools
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Native data from 

telescope

Converter

Noisypixel removal

Clustering

Hitmaker

Alignment (GBL)

Fitting (GBL)
Ntuple

(tracks + 

waveforms)

Binary data from 

oscilloscope

Oscilloscope data Conversion

Merging (tracks + wfm) 

Thinning

Waveform analysis

EUTelescope

LGADUtils

Track info

User analysis:

efficiency, cuts

• Track reconstruction performed with EUTelescope software v01-19-02 using GBL algorithm

o Requiring one hit in FE-I4 plane  resulting in ~30% of total events with an average FE-I4 efficiency of 99.6%

• Waveform processing performed with LGADUtils framework v1.0 (C++ based) developed at IFAE by V. Gkougkousis

(https://indico.cern.ch/event/782573/#preview:2889703 )

o Match event information between telescope and oscilloscope discarding events without FE-I4 hits

https://indico.cern.ch/event/782573/#preview:2889703


Schematic and read-out: single pad

• Sensor is biased from the top side with POSITIVE voltage, 
this is possible due to the presence of the BIAS-T element

o DC input is used for bias voltage

o RF output is sent to amplifier and then to the scope

o RF+DC in/out is used for the connection with the sensor

• Illuminated with IR lased on the backside

• CIVIDEC amplifiers present a gain of 100

• Average of 1000 waveforms are collected from DRS 
oscilloscope

29

C1

C
2

C
3

BIAS-T 

HV

Oscilloscope

& DAQ

ch0Amp RF
DC

RF+DC



Schematic and read-out: 2x2 arrays
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o Sensor is biased from the top side with POSITIVE 

voltage, this is possible due to the presence of the 

BIAS-T element

• DC input is used for bias voltage

• RF output is sent to amplifier and then to the 

scope

• RF+DC in/out is used for the connection with 

the sensor

o Illuminated with IR lased on the backside

o CIVIDEC amplifiers present a gain of 100

o Average of 1000 waveforms are collected from DRS 
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AIDA2020 IP gap
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Epi results: Gain and time resolution

• Gain is computed as: 𝐺 =
𝑄𝐷𝑈𝑇

<𝑄𝑝𝑖𝑛>
for each bias voltage point

o 𝑄𝐷𝑈𝑇 is the collected charge obtained by the integral of the signal from the DUT

o < 𝑄𝑝𝑖𝑛 > is the average collected charge obtained for the device with no 
multiplication (PIN)

• Gain 1 = 0.569 fC

o MIP  67 e/h pairs/µm in silicon low doped x 53 µm

• Laser signal is split, one is delayed by 50 ns and then both are combined

• Time difference is calculated at different CFD fractions for 1000 events 
for each voltage point

• Intrinsic time resolution of the LGAD is 𝜎𝐷𝑈𝑇 =
𝜎𝑓𝑖𝑡

2

• Minimum time resolution as a function of the reverse bias

• Results aready presented to RD50 community: slides@38th RD50 
Workshop
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Time resolutionGain

𝑻 = −𝟐𝟎°𝑪

https://indico.cern.ch/event/1029124/contributions/4411245/

