

The Silicon Electron Multiplier

Victor Coco¹, Vagelis Gkougkousis¹, Marius Mæhlum Halvorsen^{1,2}

The 39th RD50, Valencia, November 19th 2021

¹CERN, ²University of Oslo

Overview

- Motivation, framework and introduction
- Working principles
- Plans of fabrication
- Outlook

Motivation

[fineprint in CERN-OPEN-2018-006]	HL-LHC	SPS	FCC-ee	FCC-hh
Fluence [n _{eq} /cm ² /y]	5x10 ¹⁶	10 ¹⁷	10 ¹⁰	1017
Max Hit rate [cm ⁻² s ⁻¹]	2-4G	8G	20M	20G
Material budget per layer [X ₀]	0.1-2%	2%	0.3%	1%
Pixel size [μm ²] inner trackers	50x50	50x50	25x25	25x25
Temporal hit resolution [ps]	~50	~40	-	~10

Our approach

- Future inner tracker detectors will requite -
 - Time resolution between 10 and 50ps
 - Pixel pitch down to 25µm
 - Radiation hardness up to 10¹⁷n_{eq}

Gain

Small thickness, doping independent gain

Motivation

- Make a radiation hard sensor with internal gain
 - Avoid doping dependent gain regions'
- Idea: Generate high electric field regions by applying a potential difference to a set of electrodes
- Inversely etch (or grow) pillar structures
 - Silicon, diamond, SiC ...
 - One or more layer of electrode grids
- Electrons drifting in the "amplification and induction" region multiply and enhance the signal

Geometry

- First consider DRIE process
 - Etching of pillars and consecutive deposition of metal and oxide
- Process related constraints:
 - Guard and height of pillar
 - Sufficient guard around pillars to not get metal on pillar walls
- Impact on geometry
 - Pillar height 4-15µm,
 - Pillar width 1-4µm
 - Inter pillar distance more than 6µm

- Other fabrication techniques have different geometrical constraints

Synopsys TCAD simulations

- Synopsys TCAD
 - Version Q-2019.12
 - Version Q-2021.06
- Impact ionization model: vanOverstraeten
 - Tested university of Bologna model
- Mobility model: Canali
- Solver: PARDISO
- Recombination: Shockley-Read-Hall
- Transient model: Heavylon
- Band gap model: Slotboom

Quasi-stationary simulations

- Evaluate electric field and leakage current
 - Breakdown position depends on biasing configuration
- Pillar and bulk depletes
 - Pillar density
- High electric field in the pillars can be reached
 - Above 15V/µm

Signal simulations and charge multiplication

- Charge cloud deposited in bulk center
- Charges drift and get multiplied in pillars.
 - Gain= Q_{collected}/Q_{injected}
- Gain achieved for $\Delta V > 100V$
 - above 10 has been simulated
- Weighting field of readout electrode is concentrated in the pillar
 - Shielded by multiplication electrode
- Weighting field of backside electrode
 - "Pad like"

Optimisation Pillar pitch and timing performances

- Arrival time distribution at the gain layer will play a large role on the final time resolution
 - See [Riegler,Windischhofer; NIM A (2021) 165265]
- Inhomogeneity in path
 - Can be reduced by reducing the inter-pillar distance
 - Down to 5ps for 6um
- Can expect similar time resolution as LGADs, to be confirmed with full MIP simulations

Optimisation

- Interplay between V_1 and ΔV can be optimised
 - freedom in choice of operation settings
- High V_1 leaves high field in silicon
- High ΔV leaves high field in the oxide

200

190

180

20.0

17.5

Optimisation Electrode geometry

- Electrode geometries and pillar height
 - Retraction of the shallower electrode allow to better fill the pillar with high field
 - Similar effect to rising V_1
- Single electrode configuration
 - Simpler but higher field in the silicon
 - Different breakdown location
- Larger inter-electrode distance
 - Better spreading of the field
 - Less localised high field values

Several degrees of freedom to cope with production process constraints

The 39th RD50, Valencia November 19th 2021

Possible production processes

DRIE based

- Discussions about the process and its constraints with LeTI and CNM
- Now: evaluate what topology that can really be achieved
 - Electrode/wall guard, thickness of oxide, corner shapes...
- Next: electrical properties?
 - SiO₂/Si interface, scalloping, ...
- Homogeneity of the production?
- Performances

To be investigated in 2022

[courtesy of CNM]

Metal Assisted Chemical Etching

- Discussions with PSI
- MacEtch Process
 - Metal mask used as a catalyst for etching.
 - Electroplating with gold
 - Electrode directly on silicon
- Less "production ready"
- More appropriate for single electrode structure
- Denser pillars
- No more constraints on the guard
- Could be a simpler processing technique
- Simulations started

Summary and Outlook

- A new solid state radiation detector concept has been presented.
 - Small pitch
 - Expected time resolution similar to LGADs
 - Gain is not doping dependent

- Next steps
 - finish simulations full MIP simulations with Garfield++
 - preparation to produce a demonstrator

MIP

home.cern

The 39th RD50, Valencia November 19th 2021

Marius Mæhlum Halvorsen | The Silicon Electron Multiplier

3D simulations

The 39th RD50, Valencia November 19th 2021

Marius Mæhlum Halvorsen | The Silicon Electron Multiplier

CV curves

Simulation of one unit cell (no inter-pixel capacitance)

-

The 39th RD50, Valencia November 19th 2021

Marius Mæhlum Halvorsen | The Silicon Electron Multiplier