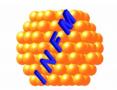
Investigation of the BiOi defect in EPI and Cz silicon diodes using Thermally Stimulated current (TSC) and Thermally Stimulated Capacitance (TS-Cap)



Chuan Liao^a, E. Fretwurst^a, E. Garutti^a, J.Schwandt^a

^aInstitut für Experimentalphysik, Universität Hamburg

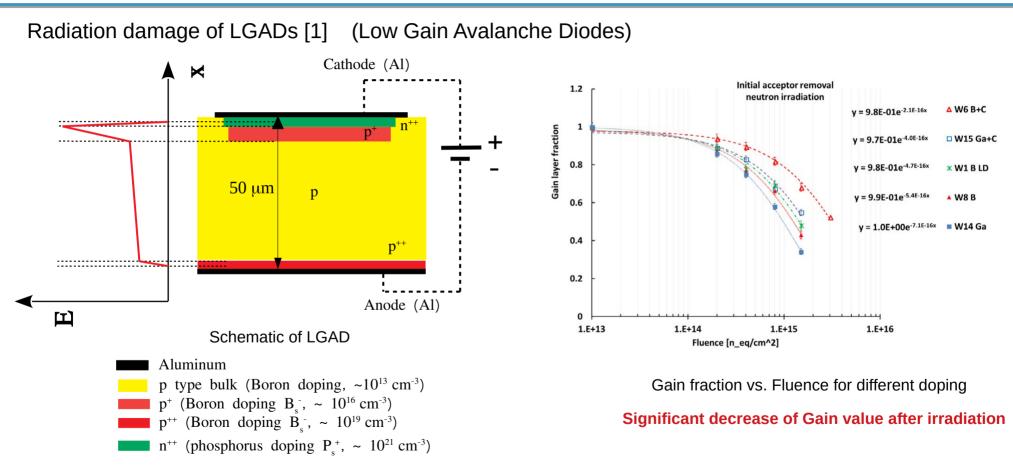
A. Himmerlich^b, Y. Gurimskaya^b, I. Mateu^b, M. Moll^b ^bConseil européen pour la recherche nucléaire (CERN)

^cNational Institute of Materials Physics (NIMP)

L. Makarenko^d

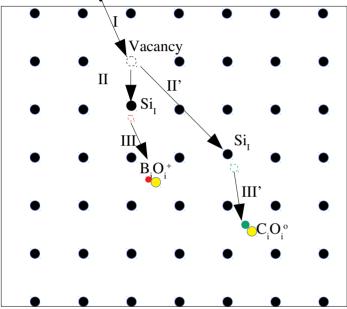
^dBelarussian State University

RD50 Nov 17, 2021


I. Motivation

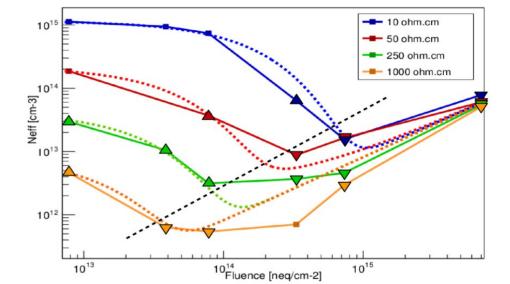
- II. Experimental details
- III. Measurements
- **IV. Simulation**
- V. Summary

Motivation


[1] Kramberger, G., et al. "Radiation effects in Low Gain Avalanche Detectors after hadron irradiations." Journal of Instrumentation 10.07 (2015): P07006.

17/11/21

Motivation


High energy particle or Gamma-ray

Schematic of radiation damage in p-type silicon material

- I: Lattice Silicon atom $(\mathrm{Si}_{\mathrm{s}})$ is knocked out by incident particle and
- Si_s gets recoil energy and turns to interstitial silicon (Si_i)
- II: Si, diffusion in the bulk and impact on Lattice Boron atom (B_s)
- III: B_s is knocked out by Si_i and turns to interstitial Boron (B_i) and finally captured by interstitial Oxygen (O_i)

[1] Y. Gurimskaya, 31st RD50 Workshop, 20-22 of November, 2017, CERN, Geneva, Switzerland,

 $N_{\mbox{\tiny eff}}$ vs. fluence for different initial doping concentration

Radiation damage of p-type diodes is dominated by acceptor removal in the beginning and afterwards by acceptor generation [1]

 B^- turn to $B_iO_i^+$

Change in N_{eff} is a factor of 2 and it will significantly affect the distribution of electric field.

Experimental details

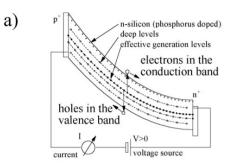
Information of measured silicon diodes					
Label	EPI50P_06_DS_3	EPI50P_06_DS_7	EPI50P_06_DS_9	CZ300P_06_DS_3	CZ300P_06_DS_7
N _{eff,0}	Expitaxial silicon, P-type 1.15e15 cm-3			Cz silicon, P-type 1.05e15 cm ⁻³	
Initial resistivity	~ 10 Ωcm			~ 10 Ωcm	
Irradiation (6 MeV electrons)	1e15 e/cm ² (3.98e13 n _{eq} /cm ²)	4e15 e/cm ² (1.59e14 n _{eq} /cm ²)	6e15 e/cm² (2.39e14 n _{eq} /cm²)	1e15 e/cm² (3.98e13 n _{eq} /cm²)	4e15 e/cm ² (1.59e14 n _{eq} /cm ²)
Area	6.21E-2 cm ²			2.9E-2 cm ²	
Thickness	50 μm			350 μm	
C-V, I-V:	Experimental parameter (C-V, I-V):			Thermally stimulated current and Thermally	

C-V, I-V:

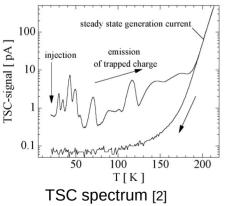
Temperature: 20 °C Humidity: < 10% Frequencies for C-V: 230 Hz, 455 Hz, 1 kHz, 10 kHz AC voltage for C-V: 0.5 V Experimental parameter (TSC and TS-Cap): Cooling down bias: 0 V Filling temperature: typical 10 K Filling: Forward bias filling, 0 V filling or light injection Filling time: 30 s Delay time: 30 s

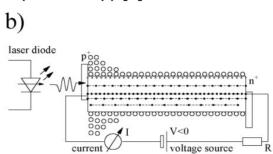
Thermally stimulated current and Thermally stimulated capacitance (TSC, TS-Cap):

17/11/21


Chuan Liao - Boron removal effect in silicon sensors

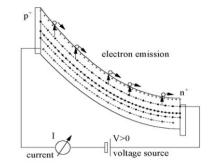
Heating rate: 0.183 K/s




Experimental details

Basic Principle of Thermally Stimulated Current-TSC (or TS-Cap) [2]:

a) Cooling


b) Injection:

Forward bias injection, light injection and majority carriers injection.

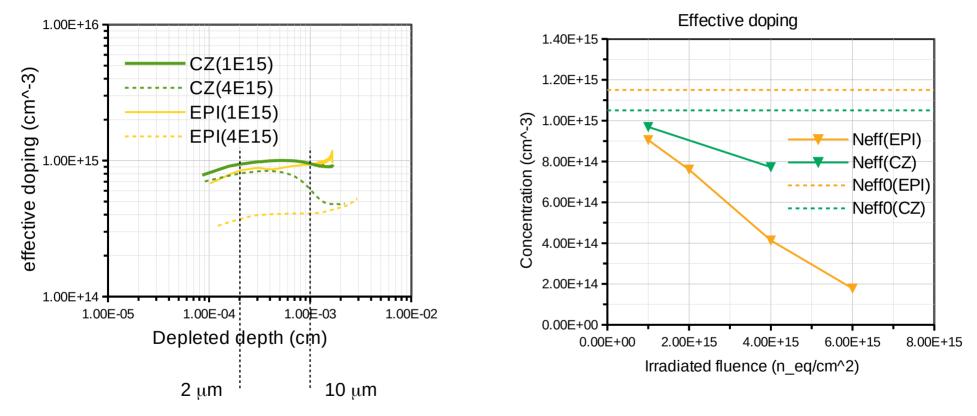
$$I_{tsc} = \frac{1}{2} q_0 A d N_t e_n \exp\left(-\frac{1}{\beta} \int e_n(T) dT\right)$$
$$e_n = \sigma_n v_{th,n} N_c \times \exp\left(\frac{-E_a}{k_B T}\right)$$
$$E_a = E_C - E_T$$

c)

c) Recording data

example of calculated TSC peak

N_t is defect concentration; β is heating rate; σ_n is capture cross section; E_a is activation energy; A is diodes area; d depleted thickness; [1]


[1] Buehler, M. G. Solid-State Electronics 15.1 (1972): 69-79.

[2] Moll, Michael. Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties. No. DESY-THESIS-1999-040. DESY, 1999.

N_{eff} profile (10 Ω cm, as-irrad)

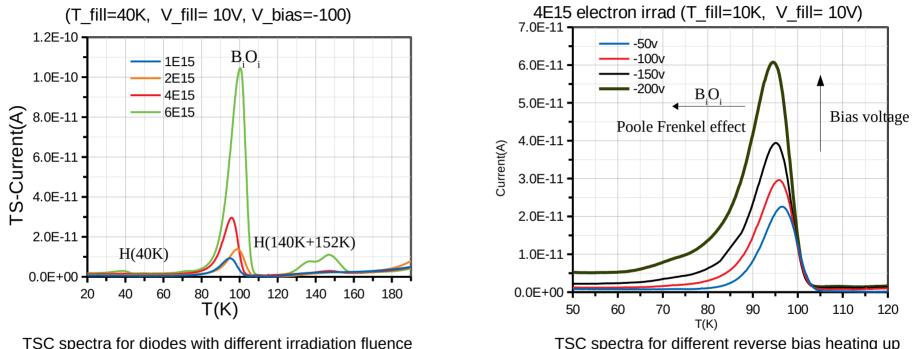
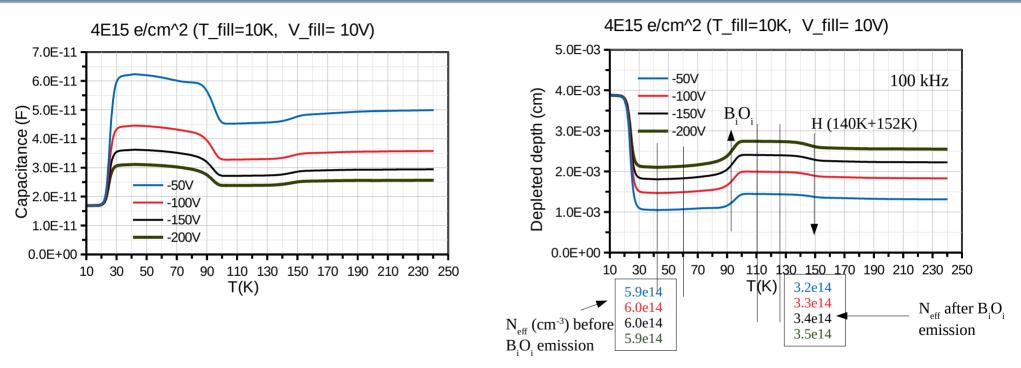

Doping profile for CZ and EPI diodes with fluence 1E15 and 4E15 e/cm⁻². (left figure)

Figure on the right: Decreases of the N_{eff} is smaller for CZ diodes compared to EPI devices (If edge effects can be ignored)

17/11/21

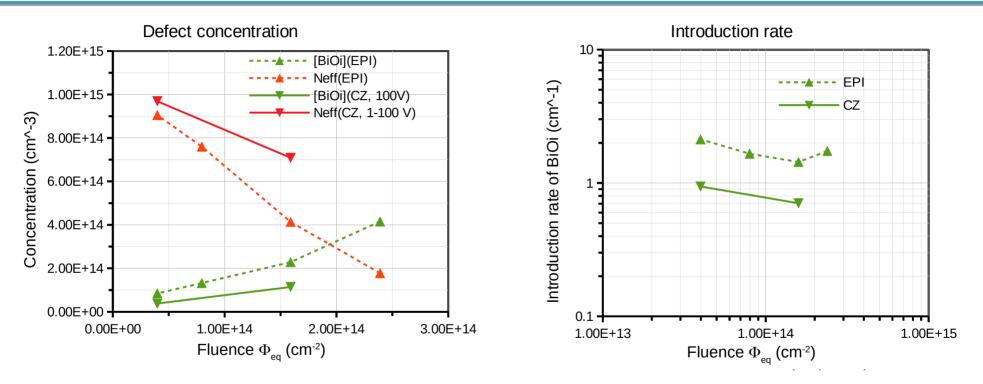
Example of TSC on BiOi (10 Ω cm, as-irrad)



TSC spectra for diodes with different irradiation fluence

- Dominant B_iO_i signal, which depends on the fluence. ٠
- Shift peak maximum with $V_{hias} \rightarrow$ Poole-Frenkel effect; electron trap B_iO_i (o/+) donor defect
- Peak amplitude increases with bias voltage due to increasing depletion depth

```
17/11/21
```



- Depleted depth was extracted from TS-cap with $d = \varepsilon_{si} \varepsilon_0 A/C$
- The shift of B_iO_i peak temperature versus V_{bias} can also be observed in TS-Cap measurement
- Freeze-out of free charge carriers for T < 30 K
- Effective doping concentration can be extracted only if the diode is not fully depleted

17/11/21

UН Universität Hamburg Defect concentration and introduction rate (as-irrad) DER FORSCHUNG | DER LEHRE | DER BILDUNG

- B_iO_i concentration of 1e15 diode and 2e15 diode are given by integration with constant depletion depth (w, which is ٠ given by C-V measurment) from 80 K to 110 K
- Defect concentration of 4e15 diode and 6e15 diode are given by the eq.(1) and sum from 80 K to 110 K. $N_t(V) = \sum_i \frac{1}{q_0 A w'}$
- Effective doping (N_{off}) is extracted from doping profile

17/11/21

Chuan Liao - Boron removal effect in silicon sensors

10

Basic principle (1-D)

Poisson equation:

Occupation fraction:

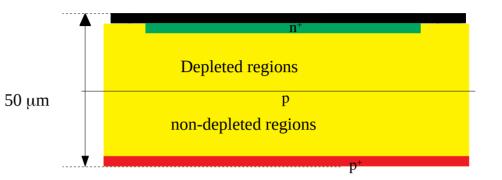
$$f(T) = \exp\left(-\frac{1}{\beta}\int e_n dT\right)$$

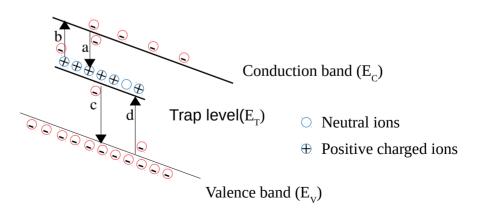
 $\frac{dE}{dv} = \frac{q_0 N_{eff}}{\varepsilon \varepsilon_0}$

Effective doping during emission:

$$N_{eff} = N_0 + N_t \cdot (1 - f(T))$$

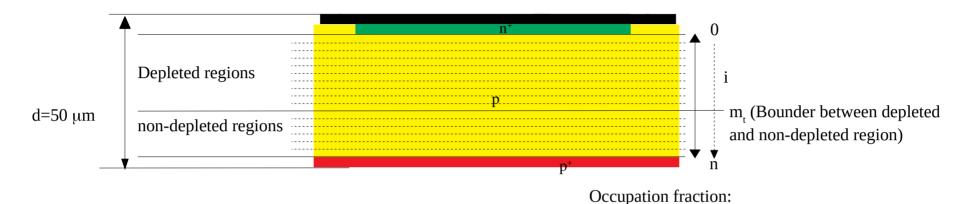
3-d Poole Frenkel ($\gamma = (qE/\pi\epsilon_0\epsilon_r)^{1/2}q/(k_BT)$):


$$e_n = \sigma_n v_{th,n} N_c \times \exp(\frac{-Ea_0}{K_b T}) [(\frac{1}{\gamma^2}) (e^{\gamma} (\gamma - 1) + 1) + \frac{1}{2}$$


TS-Capacitance:

$$C = \frac{\varepsilon \varepsilon_0 A}{d(T)}$$

TS-Current:


$$I_{tsc} = q_0 A N_t \int_0^{d(T)} e_n f(T) \frac{d(T) - x}{d(T)} dx$$

Finite element (Basic principle)

Simplification (t = index for temperature $T_t(K)$ in the region of interest, i stands for position):

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

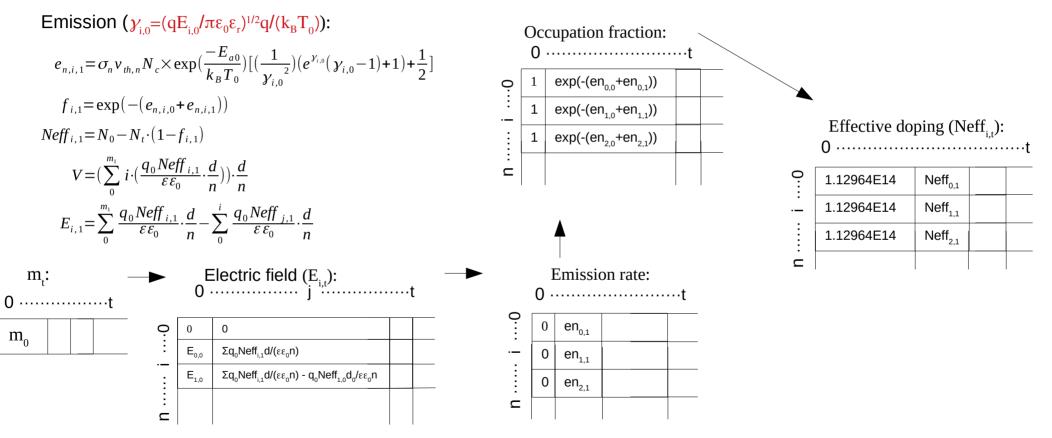
Poisson equation (i<m_t): $E_{i+1,t} - E_{i,t} = \frac{q_0 Neff_{i,t}}{\varepsilon \varepsilon_0} \cdot \frac{d}{n} \quad \text{and} \quad E_{i,t} = \sum_{i=0}^{m_t} \frac{q_0 Neff_{i,t}}{\varepsilon \varepsilon_0} \cdot \frac{d}{n} - \sum_{j=0}^i \frac{q_0 Neff_{j,t}}{\varepsilon \varepsilon_0} \cdot \frac{d}{n}$ \downarrow $\sum_{i=0}^{m_t} E_{i,t} \cdot \frac{d}{n} = V$ or is $f_{i,t} = \exp\left(-\sum e_{n,i,t}\right)$

Effective doping during emission:

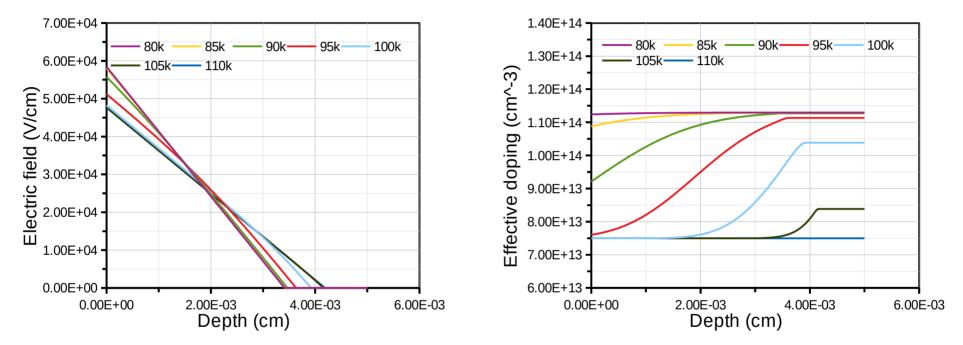
 $Neff_{i,t} = N_0 - N_t \cdot (1 - f_{i,t})$ N_t is defect concentration

3-d Poole Frenkel $(\gamma_{i,t} = (qE_{i,t}/\pi\epsilon_0\epsilon_r)^{1/2}q/(k_BT_t)):$ $e_{n,i,t} = \sigma_n v_{th,n} N_c \times \exp(\frac{-E_{a0}}{k_BT_t})[(\frac{1}{\gamma_{i,t}})(e^{\gamma_{i,t}}(\gamma_{i,t}-1)+1)+\frac{1}{2}]$

 σ_n is capture cross section; $v_{th,n}$ is thermal velocity of electron; N_c is state density on conduction band; E_{a0} is zero field activation energy; k_B is Boltzmann constant



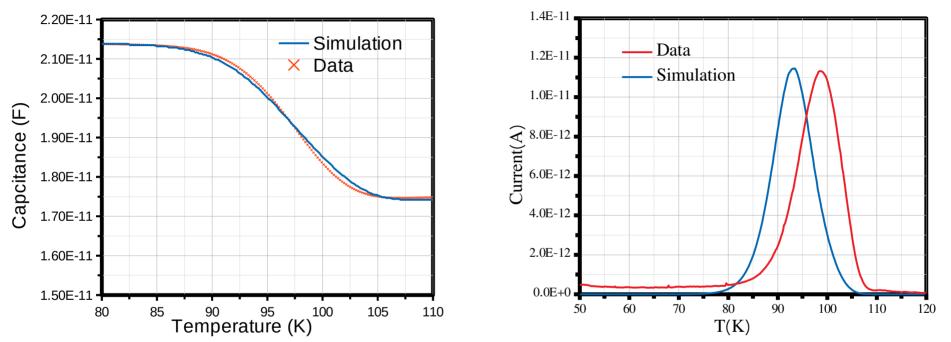
UΗ


Simulation procedure (Matrix)

During emission 1 (example, t = 1):

Electric field and Doping profile for V_{bias} =-100V

The distribution of electric field and doping profile for different temperatures. During B_iO_i emission, the changes of electric field and doping profile is observed.


BiOi defect information:

 σ_0 = 1e-14 cm², Ea0 = 0.269 eV, N_t = 3.8e+13 cm⁻³, N_{eff.0} = 1.13e+14 cm⁻³

TS-Cap and TSC simulated and compared with data

Comparison of simulation and data for TS-Cap (left) and TSC spectrum (right). Possible reasons for the difference between simulation and data:

Effect of non-depleted region •

17/11/21

Summary

- I. Results for ~10 Ωcm diodes irradiated by 6 MeV electron with fluence (1e15 e/cm², 2e15 e/cm², 4e15 e/cm² and 6e15 e/cm²):
 - a). Macroscopic measurement (C-V):
 - Effective doping decreases as fluence increases
 - b). Microscopic measurement (TSC, TS-Cap):
 - B_iO_i peak on TSC spectra: 3-D Poole Frenkel effect (shift with bias voltage)
 - B_iO_i concentration proportional to irradiated fluence
 - B_iO_i introduction rate (g_{BiO_i}) is nearly the same for the different fluence values
 - Different B_iO_i concentration extracted from TSC and TS-Cap
 - c). The comparison of CZ and EPI diodes:
 - Cz material shows smaller decrease of N_{eff} and lower BiOi concentration compared to EPI material for the same fluence
- II. Results of simulation:
 - Considering the Poole Frenkel effect, the changes of electric field and doping profile has been simulated
 - The simulated TS-Cap values agree quite well with the experimental data. The small differences between simulation and experiment might due to an effect from non-depleted region
 - The difference between the simulated and measured TSC spectrum is quite large. This finding has to be investigated further in more detail.

[1] C. Liao 37th RD50 Workshop, Nov 2020, Zagreb.

