

Radiation damage investigation of epitaxial p-type silicon using Schottky and pn-junction diodes

E. GIULIO VILLANI, <u>Christoph Klein</u>, Thomas Koffas, Robert Vandusen, Garry Tarr, Angela McCormick, Philip Patrick Allport, Laura Gonella, Ioannis Kopsalis, Igor Mandic, Fergus Wilson, Yebo Chen, Peilian Liu

39TH RD50 WORKSHOP, 17-19 NOVEMBER 2021

Schottky Project description and goals

• What:

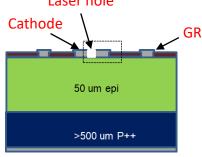
- fabricate Schottky and n⁺p diodes on p-type epitaxial (50μm thick) silicon wafers
- doping concentrations as they are normally found in CMOS MAPS devices

• Why:

- investigate and gain a deeper understanding of radiation bulk damage in CMOS sensors.
- develop reliable damage models that can be implemented in TCAD device simulators (Synopsys or Silvaco)

• How:

- purchase of 6-inch wafers at five B-doped epitaxial levels (10¹³, 10¹⁴, 10¹⁵, 10¹⁶ and 10¹⁷ cm⁻³) 25x each, total **125 wafers**
- fabrication process has started both at ITAC (RAL) and Carleton University Microfabrication Facility (CUMFF).
- tests will be carried out at RAL, Carleton, Birmingham, JSI, IHEP



Design and layout of devices

5 type of devices proposed:

- #1: 2 mm Ø cathode with 0.4 mm Ø central hole, 10 x 10 mm² area
- #2: 1 mm Ø cathode, 0.2 mm Ø central hole, 5 x 5 mm²
- #3: 0.5 mm Ø cathode, no central hole, 2.5 x 2.5 mm²
- #4: 0.1 mm Ø cathode, no central hole, 0.5 x 0.5 mm²
- 'cell' with the previous 3 flavors (2,3,4) grouped together, to exploit wafer uniformity on small area
- #5: 6 TLM points for contact and epi resistance
- 2 masks only (metal and oxide)
- detailed description during the <u>35th RD50 workshop</u>

Substrate

Fabrication details & comparison

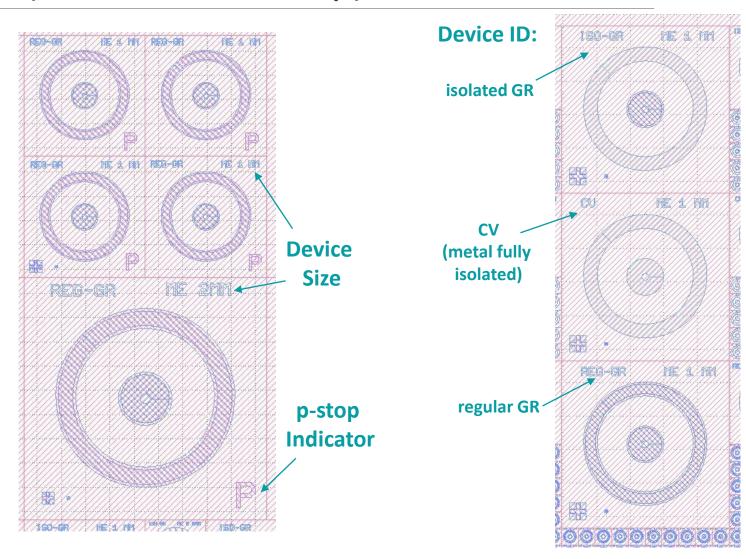
RAL-ITAC

- Schottky fabrication process only, optimised on test wafers
- oxide deposition @150°C
- Al sputtering immediately after etching (no thin SiO2 layer)
- Al lift off in Acetone ultrasonic tank

CUMFF

- pn-junction and Schottky processes, optimised on test wafers
- 6" substrate wafers laser cut into 4" or 6" wafer pieces
- high temperature thermal oxidation
- Al front metal thermal deposition, back Al via e-beam evaporation
- front metal patterning + etching

full details of fabrication processes in <u>E.G. Villani's</u> talk from the 36th RD50 Workshop

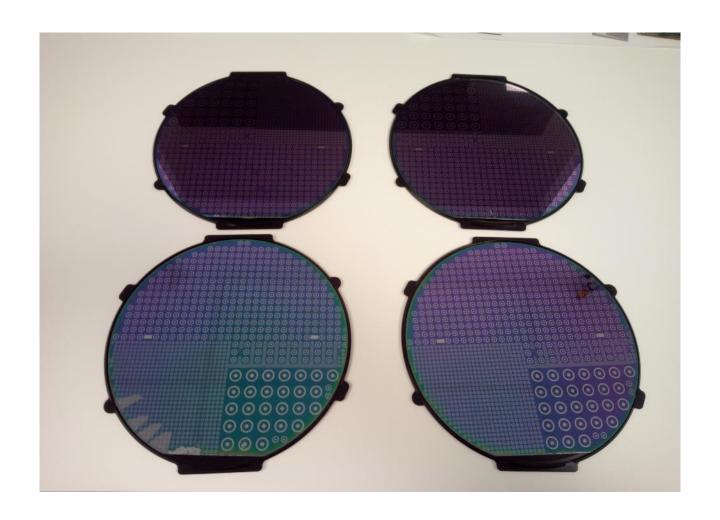

Fabrication status update (since last workshop)

CUMFF

- new masks made, including isolated MOS gate GR variation for all device types + optional p-stop
 - after initial success in reducing leakage current in high-resistivity wafers (see <u>last workshop</u>)
- 2x ¼ 1e16 wafers + 2x full 4" 1e13 wafers; one for each doping concentration as standard pn-junctions or pn + additional p-stop

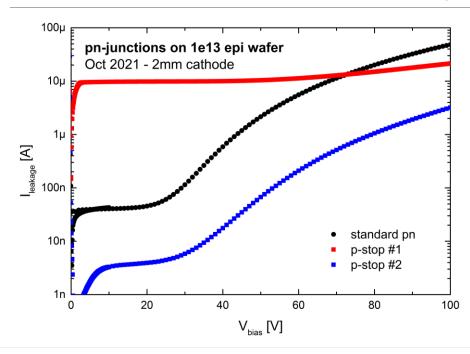
RAL

• 5x full 6" Schottky wafers (3x 1e13; 1x 1e14, 1x 1e15)

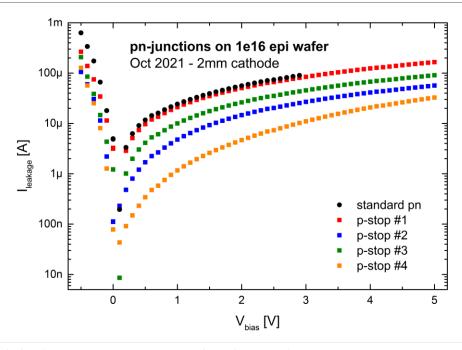

Fabrication status update (since last workshop)

CUMFF

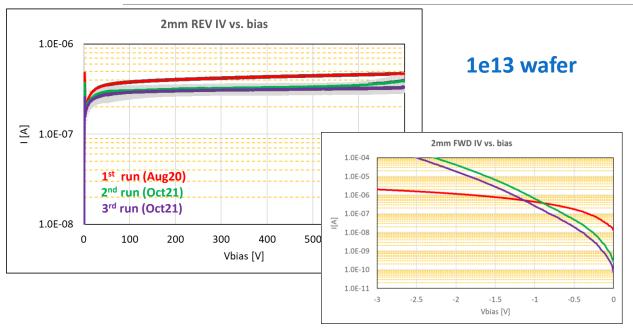
- new masks made, including isolated MOS gate GR variation for all device types + optional p-stop
 - after initial success in reducing leakage current in high-resistivity wafers (see <u>last workshop</u>)
- 2x ¼ 1e16 wafers + 2x full 4"
 1e13 wafers; one for each
 doping concentration as
 standard pn-junctions or pn +
 additional p-stop

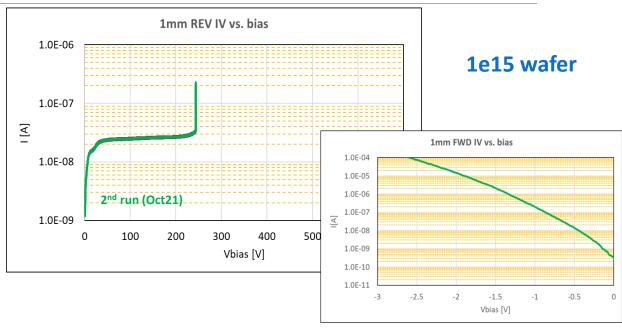

RAL

• 5x full 6" Schottky wafers (3x 1e13; 1x 1e14, 1x 1e15)



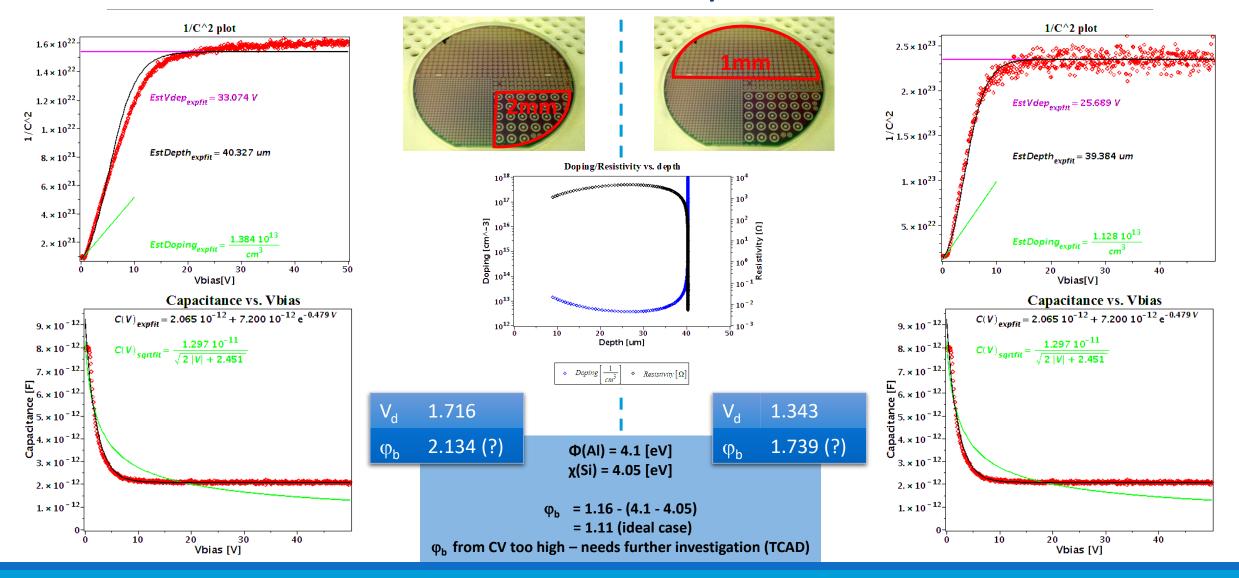
IV measurements: CUMFF pn-junctions (regular GR, floating)


- very low initial current often seen
- no hard breakdowns observed; gradual increase in current
- > leakage current at much lower levels compared to first iterations
- effect of different GR flavours and p-stop will be investigated in coming weeks



- high leakage current even at low bias voltages
 - no 'plateau', current keeps increasing
- smaller structures often have inconsistent IV curves
- first fabrication on low-resistivity wafer, improvements in future iterations

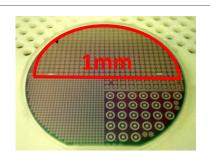
IV measurements: RAL Schottky 1e13 vs. 1e15

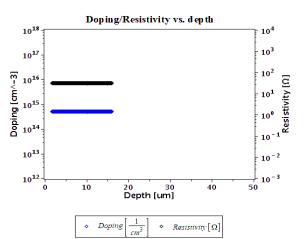

- reverse bias IV similar in all runs, slightly lower leakage in the two latest runs
 - breakdown voltage > 700V
- forward bias shows very different characteristics

- expected lower leakage in reverse bias, with lower BV
- measured BV is high for this doping
- forward bias ~linear

CV measurements: RAL 1e13 Schottky

T = 21°C f = 100kHz $V_{AC} = 30$ mV

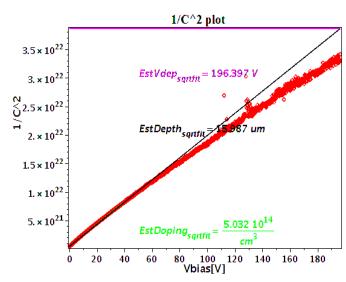


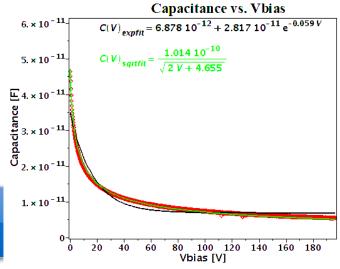

CV measurements: RAL 1e15 Schottky

T = 21°C f = 100kHz $V_{AC} = 30$ mV

- 2 HR wafers show doping as expected
 - CV plot not really well described by $1/\sqrt{V}$ fit
 - barrier height estimate from CV too high
 - estimate from IV in progress

- devices on 1e15 wafer so far show very good 1/√V Cap dependence
 - doping as expected
 - barrier height clearly too high





 $\chi(Si) = 4.05 [eV]$ $\phi_b = 1.16 - (4.1 - 4.05)$ = 1.11 (ideal case) $\phi_b \text{ from CV too high - needs}$

 $\Phi(AI) = 4.1 [eV]$

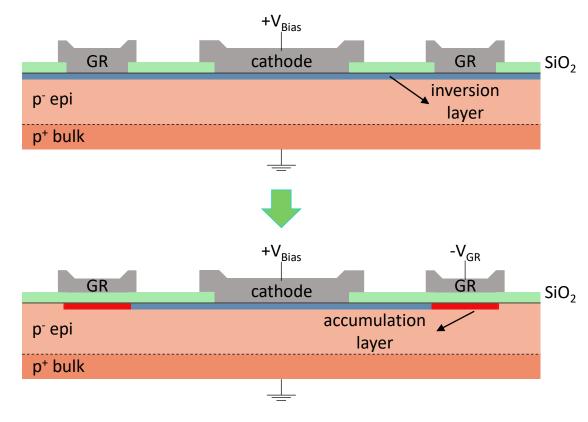
V_d 2.328 φ_b 2.646 (?)

further investigation (TCAD)

Summary & outlook

- testing has proceeded successfully after shutdown periods last year
- TCAD simulations of Schottky diodes ongoing
 - need to improve breakdown voltage simulation
- fabrication efforts at RAL and CUMFF has ramped up
 - new mask design at CUMFF proves adaptability of fabrication process to findings

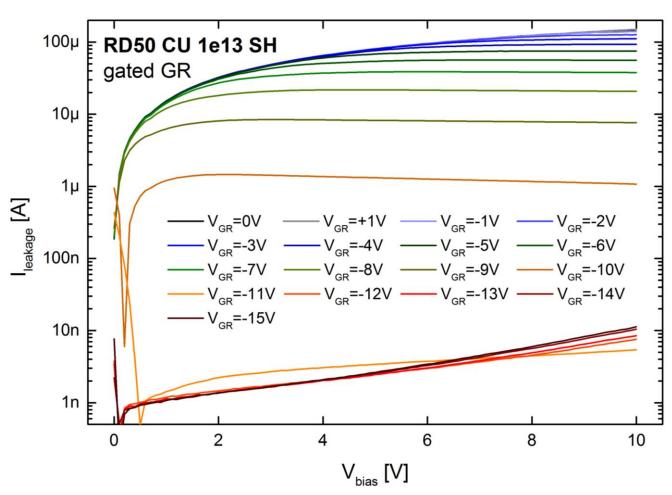
Outlook:


- > charge collection measurements at RAL
- > DLTS + TAS measurements at Carleton
- > proton irradiations at Birmingham, neutron irradiations at Ljubljana

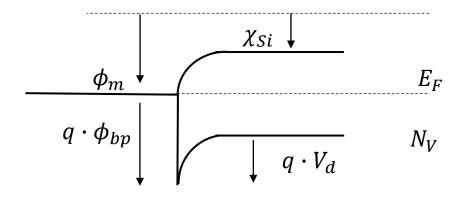
Backup

Reducing leakage current: MOS gate guard ring structure

- some diode runs on 1e13 cm⁻³ wafer had high leakage currents
- tests showed that cause was formation of electron inversion layer
- expected typical behaviour after radiation damage in oxide
 - outlook to actual behaviour after irradiation
- mitigate by modifying the masks to isolate GR on oxide
- apply low negative V to gated GR
 - accumulation layer formation in interface
 - limit inversion layer

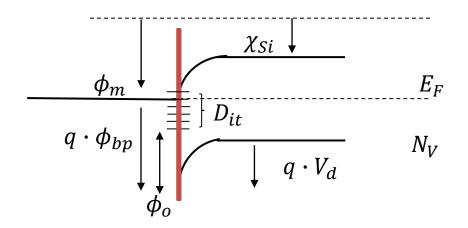

solve this issue now

⇒ improve performance of irradiated devices later


Reducing leakage current: MOS gate guard ring structure

- gated GR yielded expected results
- high leakage fully mitigated for $V_{GR} < -10V$
 - depending on oxide thickness
- devices even showed 'memory effect'
 - stable-ish charge traps in interface
 - further improvements during repeated scans
- try p-stop for comparison and more consistent (?) performance
- looking forward to effects on irradiated devices

Schottky barrier – Theory

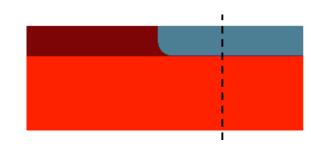


$$\phi_b = V_d + \frac{K \cdot T}{e} \cdot \left(ln \left(\frac{N_V}{N_A} \right) + 1 \right) - \Delta \varphi$$

Table 1. Experimental barrier height data for p-type silicon Schottky diodes

Metal	Si
Al	0.58
Ag	0.54
Au	0.34
Ti	0.61
Hf	0.54
Ni	0.51
Pt	0.20
	[1]

$\phi_{ms}^{\nu}(eV)$						
Metal	ϕ_m (eV)	From $\frac{1}{c^2} - V$	From I-V		φ _{ms} (eV) ((Ref. 3)	$b_{m\kappa}^{\nu} + \phi_m^{\kappa}$ (eV)
Ag	4.31	0.53	0.55	0.54	0.56	1.10
ΑI	4.20	0.57	0.58	0.58	0.50	1.08
Au	4.70	0.34 (210°K)	0.34 (210°K) 0.35 (250°K)	0.34	0.81	1.15
Cu	4.52	0.46 (280°K)	0.46	0.46	0.69	1.15
Ni	4.74	0.50	0.51	0.51	0.67	1.18
Pb	4.20	0.54	0.56	0.55	0.41	0.96


$$* \phi_b = \gamma \cdot (E_g + \chi_{si} - \phi_m) + (1 - \gamma) \cdot \phi_o$$

$$\gamma = \frac{\varepsilon}{\varepsilon + q^2 \cdot \delta \cdot D_{it}}$$

 $\varepsilon = \text{permittivity of interface layer} \sim \varepsilon_0$

 δ = thickness of interface layer hp: 1-2 [nm][2]

 D_{it} = interface states density \rightarrow [1.3-2.6]e13 [cm⁻² eV⁻¹]

The presence of metal-Si interface states affects the barrier height ϕ_b and diffusion potential V_d

* Cowley-Sze model with thin oxide insulating layer between Si-Metal

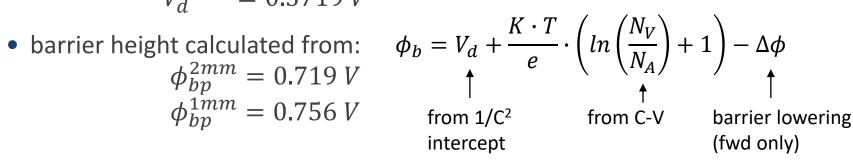
estimate of $\phi_o \sim 0.38 \text{eV}$ for neutrality level above BV edge

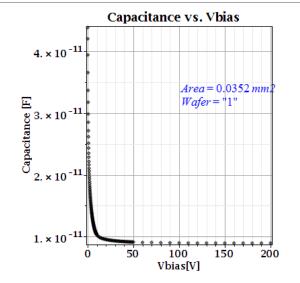
[1] R.W.Bene'et al.; J.Vac.Sci.Technol. 14.925 (1977)

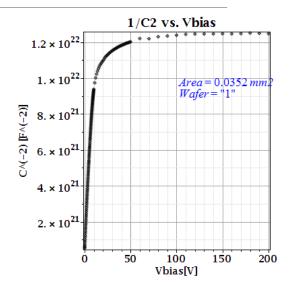
[2] ITAC measurements & http://dx.doi.org/10.1063/1.347181

Schottky barrier height

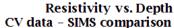
- Schottky barrier derived from CV measurement
- measured depletion voltage + depth:

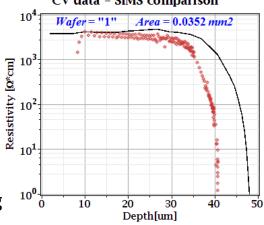

	Layout #1 (2mm)	Layout #2 (1mm)
V _{dep}	7.715 V	4.03 V
D _{dep}	40.77 um	36.17 um

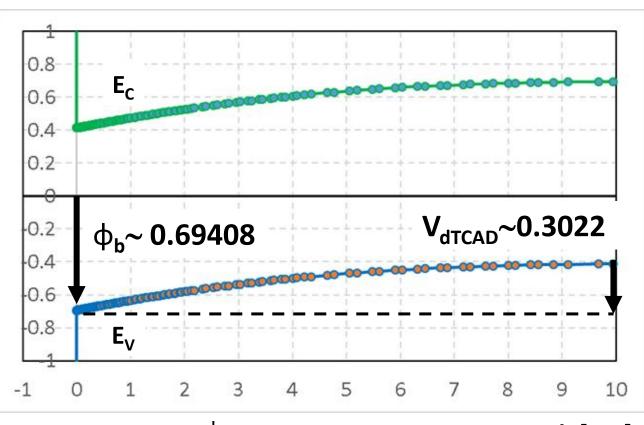

 diffusion potential inferred from the intercept of C⁻² with the V axis using V_{den}

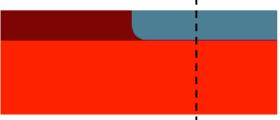

$$V_d^{2mm} = 0.3343 V$$

 $V_d^{1mm} = 0.3719 V$


$$\phi_{bp}^{2mm} = 0.719 V$$


$$\phi_{bp}^{1mm} = 0.756 V$$

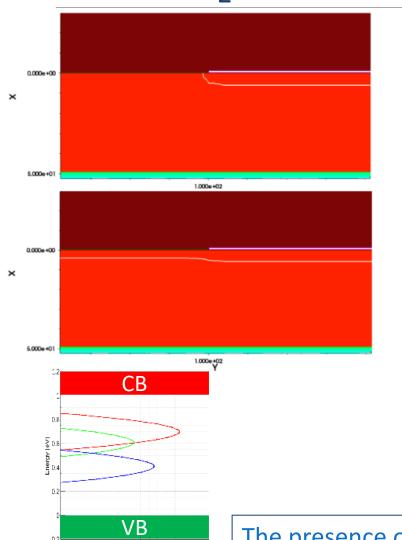

Schottky barrier in TCAD


 experimental data of barrier height vs. metal workfunction for n-type Si

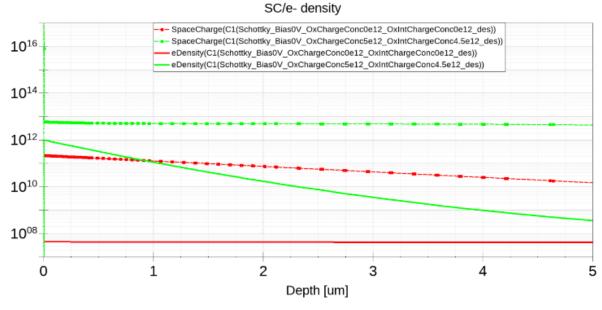
Metal	Si	Ge	GaAs	_
Al	0.58	0.48	_	
Ag	0.54	0.50	0.63	_ (
Au	0.34	0.30	0.42	L
Ti	0.61	0.48	_	
Hf	0.54	_	0.68	
Ni	0.51	_	_	
Pt	0.20	_	_	

> assuming ~ the same for p-type

• $\phi_{bp} \sim 0.50\text{-}0.58 \text{ eV}$ reported in literature



Depth [um]


CNL = 5.3 [eV] D = 1.5e - 7 [cm]Nint = 2.05e13 [cm - 2eV - 1] band diagram

TCAD: SiO₂ traps

Irap Density [cm*-2leV*-1]

Interface	Level	Concentration	σ
Defect			
Acceptor	E _C -0.4 eV	40% of acceptor N _{IT}	0.07 eV
		$(N_{IT}=0.85 \cdot N_{OX})$	
Acceptor	E _C -0.6 eV	60% of acceptor N _{IT}	0.07 eV
		$(N_{IT}=0.85 \cdot N_{OX})$	
Donor	E _V +0.7 eV	100% of donor N _{IT}	0.07 eV
		$(N_{IT}=0.85 \cdot N_{OX})$	

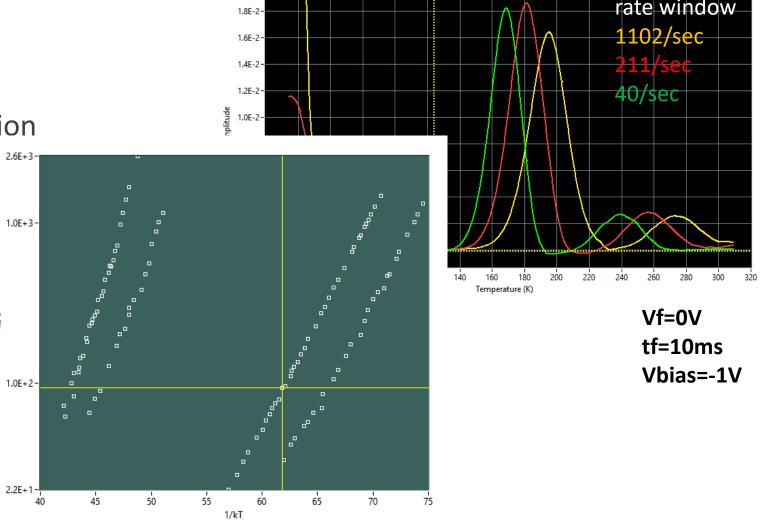
^{*} Effects of Interface Donor Trap States on Isolation Properties of Detectors Operating at High-Luminosity LHC, DOI: 10.1109/TNS.2017.2709815

Fixed oxide-charge (**Oxch**) density and interface traps (**Oxint**) included Interface traps distributed among 3 energy levels, Gaussian, $\sigma = 70$ meV Ratio Oxint/Oxch ~ 0.9

The presence of SiO2- Si interface states affects leakage current between Cath and GR

DLTS measurements: pn-junction diode @Semetrol

DLTS spectrum:

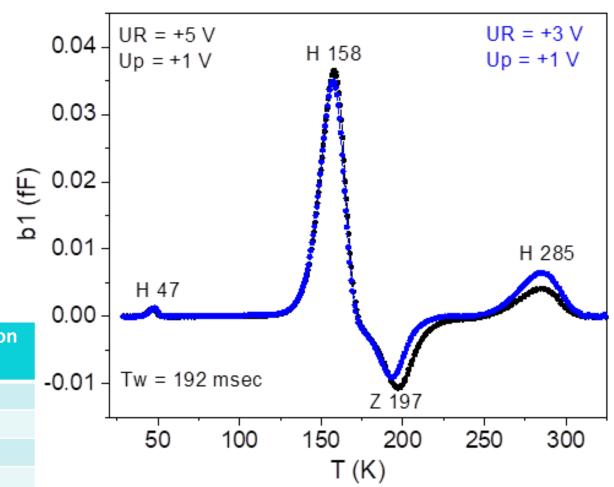

• 2 maxima

analysis with Gaussian deconvolution

⇒ peaks contain 2 traps each

trap params from Arrhenius plot:

Midpoint temp (K)	E _t (eV)	Sigma (cm²)	N _t /N _s
170.6	0.293	7.6E-16	9.7E-3
182.8	0.310	7.0E-16	2.1E-2
241.8	0.430	1.0E-15	7.6E-4
258.5	0.536	3.2E-14	3.5E-3

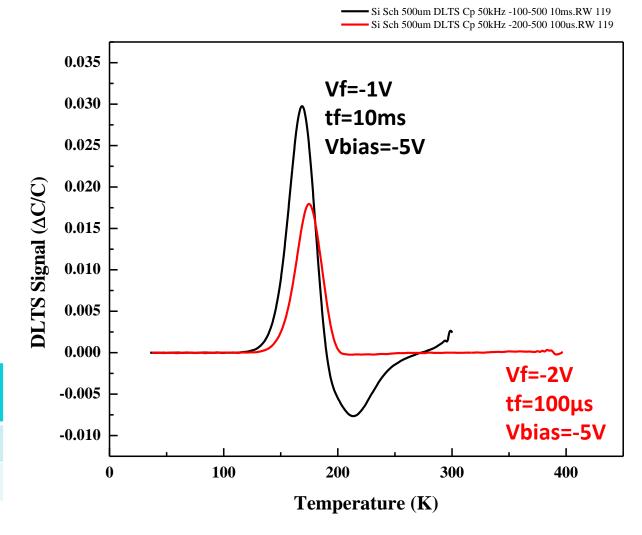

DLTS measurements: Schottky diode @Bucharest

DLTS spectrum:

- 3 maxima from hole traps
- 1 minimum, most likely from surface/interface states

trap parameters (Vbias=+5V; Vf=+1V):

Defect	Temp (K)	Ea (eV)	Sigma (cm2)	Defect concentration (cm-3)
H47	47	0.069	6.87E-17	2.49E10
H158	158	0.294	4.35E-16	9.32E11
Z197	197	0.439	1.85E-14	2.90E11
H285	285	0.611	3.76E-15	1.32E11

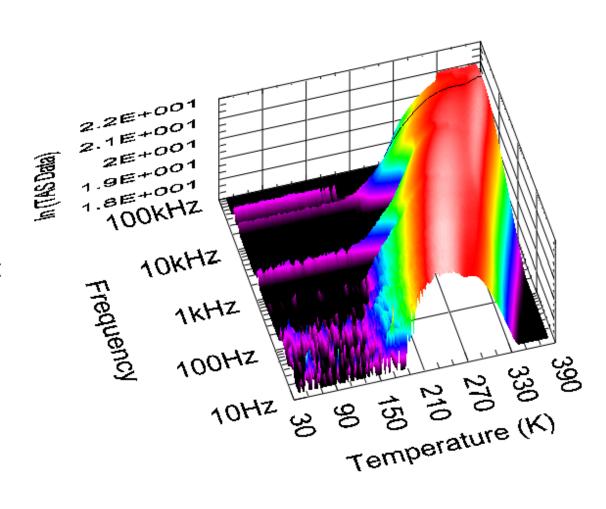


DLTS measurements: Schottky diode @Semetrol

DLTS spectrum:

- peak with 2 majority carrier traps
- 'minority' carrier trap
 - ⇒ vanishes for reduced + shorter filling pulse
 - ⇒ surface/interface states likely
- large majority carrier trap for larger filling pulses at room temperature

Midpoint temp (K)	E _t (eV)	Sigma (cm²)	N _t /N _s
170	0.312	5.5E-15	7.8E-3
180	0.294	3.3E-16	2.2E-2

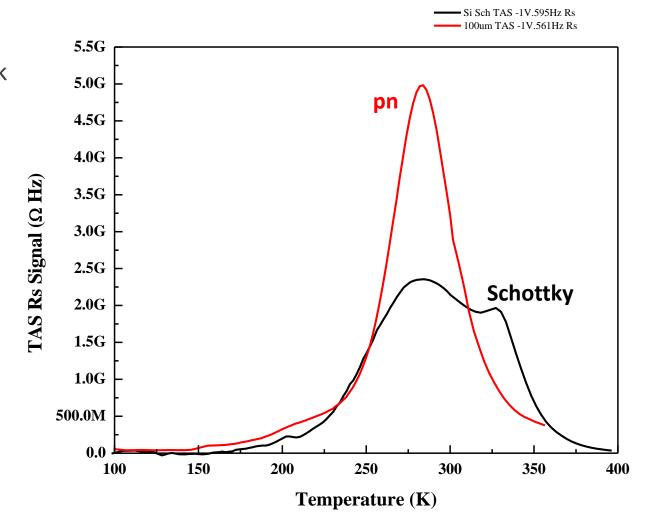


Thermal Admittance Spectroscopy (TAS)

 samples characterized with other spectroscopic techniques @Semetrol (DDLTS, IDLTS, IVT, PICTS, TAS)

TAS:

- measure capacitance C and conductance G as function of frequency and temperature
- defect contribution to C/G depending on test signal frequency and temperature
- steps in C or peak in G for thresholds
- steady-state measurement
- applicable for low-doped or high-resistivity materials, complements DLTS



Thermal Admittance Spectroscopy (TAS)

TAS analysis:

- higher trap energy in Schottky for similar peak
- second Schottky trap near mid-gap
- energy shift at different test voltages
 - field dependence of trap energy
 - might explain difference between Schottky and pn-junction (higher E-fields in pn diode)

Sample	V _{bias}	E _t (eV)	σ (cm²)
PN	-1V	0.384	1.1E-16
Schottky	-1V	0.498	1.6E-14
Schottky	-2V	0.467	3.0E-15
Schottky	-1V	0.664	3.5E-13
Schottky	-2V	0.614	3.7E-14

