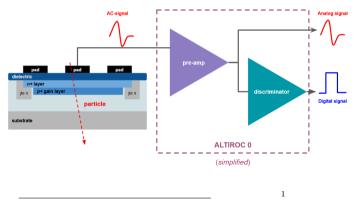
CHARACTERIZATION OF AC-LGAD SENSORS USING THE ALTIROC READOUT ASIC

<u>G. D'Amen</u>¹, W. Chen², C. DE LA TAILLE⁴, G. GIACOMINI², M. MOREANS⁴, E. ROSSI², N. SEGUIN-MOREAU⁴, L. SERIN³, A. TRICOLI¹

¹Physics Department, Brookhaven National Lab, Upton (US)
²Instrumentation Division, Brookhaven National Lab, Upton (US)
³IJCLab, Orsay (Fr)
⁴Omega, Paris (Fr)



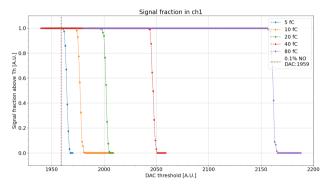
The $\mathbf{39}^{th}$ **RD50 workshop** Valencia

18 November 2021

READOUT WITH ALTIROC ASIC THE ALTIROC ASIC

${\bf A}{\rm TLAS}\;{\bf L}{\rm GAD}\;{\bf Timing}\;{\bf ROC}$

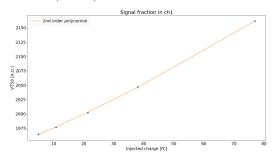
- ALTIROC designed for LGAD unipolar signals for ATLAS High-Granularity Timing Detector (HGTD).
- Compatibility to AC-LGAD bipolar signals not ensured!
- ALTIROCO ASIC: first prototype of ALTIROC chip (CMOS 130 nm); includes *Pre-amplifier* (Analog VPA signals) + *Discriminator* (Digital signals) for **ToT** measurement


¹For additional informations on ALTIROC, see: https://cds.cern.ch/record/2719855

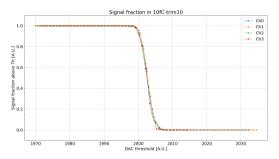
$\ensuremath{\mathbf{ALTIROC}}$ $\ensuremath{\mathbf{ASIC}}$ characterization with pulse-generator

ASIC RESPONSE TO FAST SIGNALS

- Fast signal injected from pulse generator
- S-curve of digital signal fraction computed for multiple DAC points in wide range
- Acquired pulses per DAC point = 200


 $\mathbf{Signal}\% = \frac{signals\ above > 500\ mV}{total\ signals}$

S-curves scan repeated with multiple input charges (5 fC, 10 fC, 20 fC, 40 fC and 80 fC) obtained by modulating input signal amplitude (50 - 800 mV)¹

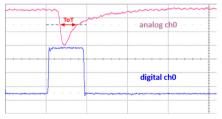

¹ALTIROC0 input capacitance: 100 fF and Q = C * V

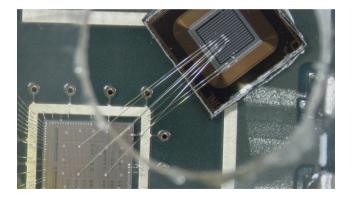
S-CURVE CHARACTERIZATION

S-curves fitted with Complementary Error function (ERFC)

Value of 50% occupancy point (VT50) plotted as a function of input charge

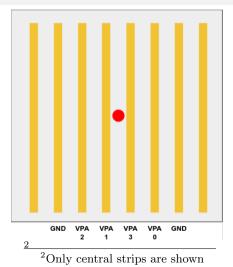
"Handmade" **trimming** by shifting Ch0, Ch1 and Ch3 curves of the distance between the VT50 of Ch2 and the VT50 of the channel, leading to similar response across channels


AC-LGAD sensor read-out using ALTIROC


READOUT WITH ALTIROC ASIC

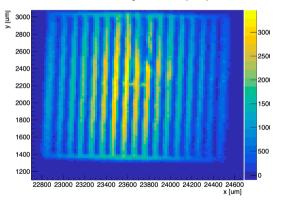
Device Under Test

16 strip BNL AC-LGAD


- Area: $2 \times 2 \text{ mm}^2$
- 16 strips, pitch 100 $\mu {\rm m},$ gap 44 $\mu {\rm m}$
- $V_{bias} = -170 V$
- 4 strips bonded to 4 input channels of ALTIROC 0 ASIC

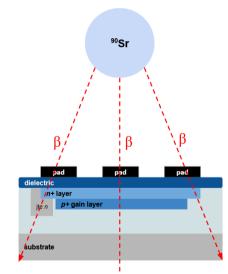
READOUT WITH ALTIROC ASIC

Wirebonding scheme

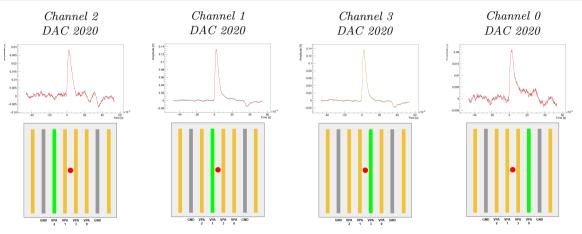

- **Central neighbouring strips** wire bonded to the four input channels on the ALTIROC ASIC
- Strips chosen to be **far from the device guard-ring** to minimize border effects
- Lateral strips on their left and right are wire-bonded to the same ground as the ASIC
- Focus is on inter-strip signal sharing

AC-LGAD CHARACTERIZATION USING IR LASER

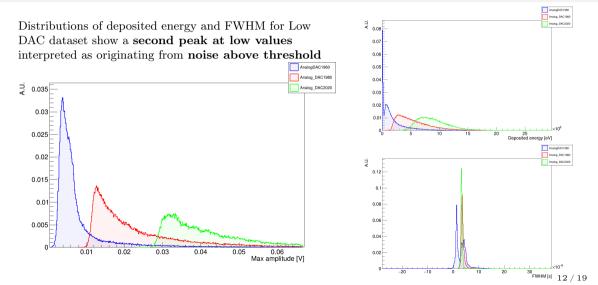
ALTIROC setup adapted to TCT station; characterization performed with IR laser with 10 kHz frequency



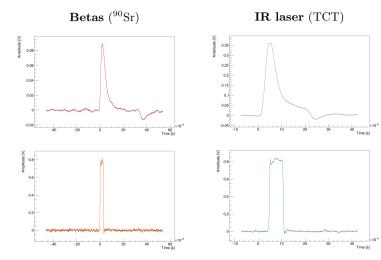
Normalized charge collection [A.U.]


Colour indicates **integral charge of the signal peak** from the ALTIROC analog output

AC-LGAD characterization using β


- β particles are close to MIPS
- Isotropic distribution of particles over solid angle
- Landau interaction with matter allows response study over continuous energy spectrum
- Betas penetrate through metallisation; sensor performance over its whole area can be studied
- Tested at 3 DAC levels, Low DAC (0.1% Noise occupancy), High DAC (best jitter) and Mid Value (average between Low and High)

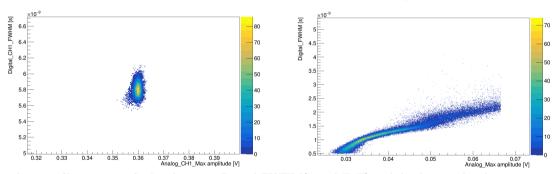
β Waveforms



Study of relative signal amplitude on different neighbouring strips can be exploited in reconstruction with **center-of-mass algorithms**

Analog Readout - Channel 1

BETA/IR laser comparison

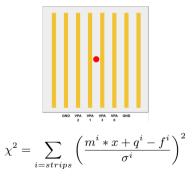

Comparison between Beta and Laser signals

- Similar shape
- Equivalent charge injected by IR laser equivalent to several (~ 40) MIPS; signal amplitude is far higher
- Amplitude distribution of β signals follows Landau distribution; Signal generated by IR Laser has point-like energy release

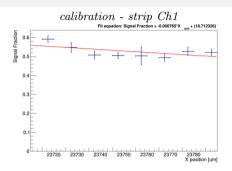
BETA/IR LASER COMPARISON

TCT IR Laser

Discriminator response characterization comparison for IR Laser (left) and 90 Sr β (right)

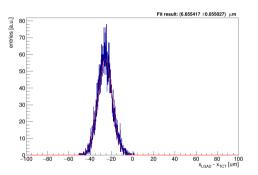


⁹⁰Sr Betas


Approx. **linear correlation** between Digital FWHM(signal ToT) and Analog amplitude ToT can be used as proxy for Amplitude when combining signals from neighboring electrodes in position and time measurements

4D performances

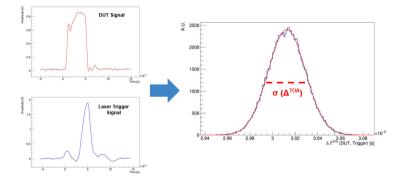
SPATIAL RESOLUTION



- x: laser position
- m^i, q^i : calibration params
- f^i : amplitude fraction observed by i^{th} strip

- Use data points and TCT position information (\mathbf{x}_{TCT}) to find **linear** calibration parameters (m^i, q^i) for each strip
- Spatial resolution computed via χ^2 minimization of signal fractions observed by multiple strips

SPATIAL RESOLUTION



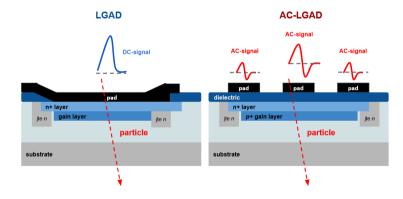
Space resolution reconstructed from difference between laser focusing position (from TCT) and position obtained from χ^2 minimization (statistically independent data set)

- Oscillations $\sim 20 \ \mu m$ in the setup (due to board size) make impossible a precise estimate of the spatial resolution^{*a*}
- Spatial dispersion of \sim 6-10 μ m observed in dataset, measure of the intrinsic bias of the reconstruction method

^{*a*}More details in the backup

TIME RESOLUTION

- Time resolution obtained by temporal spread of ToA of digital signals compared to external trigger
- Signals generated by IR laser pulses
- Time resolution is the width of the distribution
- No Landau fluctuations for IR laser; equivalent to measurement of signal jitter

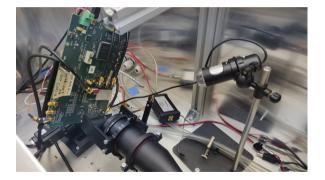

$$Width = \sqrt{(\sigma_t^{DUT})^2 + (\sigma_t^{trig})^2}$$

$$\sigma_t^{DUT} \simeq 14 \text{ ps} (21 \text{ fC input charge, DAC 2020})$$

RECAP & CONCLUSIONS

- First characterization of bipolar AC-LGAD signals readout by an ASIC
- ALTIROC 0 proved to be a suitable readout for bipolar AC-coupled signals generated in a BNL AC-LGADs
- Characteristics of the readout signals are compatible with expectations for AC-LGAD signals and previous ALTIROC results
- Time resolution (jitter) of the ALTIROC + AC-LGAD was estimated using an IR-Laser at around 14 ps using digital signals generated by ALTIROC0 discriminator. A precise estimate of the ALTIROC Jitter is needed to extrapolate AC-LGAD time resolution
- Characterization of the space resolution of the system is difficult due to mechanical constraints. Preliminary results based on the spatial dispersion of signals obtained using the IR laser are presented. <10 μ m resolution can be achieved, limited by experimental set up

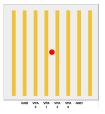
AC-LGAD AS 4D DETECTORS

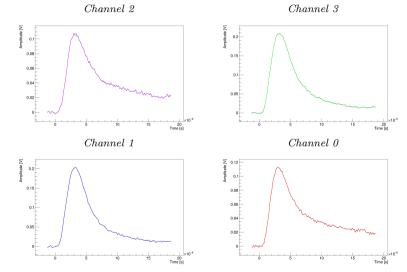


The AC-LGAD paradigm:

- Bipolar signal AC-coupled through dielectric to metal pads
- Both 100% Fill Factor and fast timing (~30 ps)
- Signal shared on neighbouring pads helps in achieving spatial resolution O(10 μm)

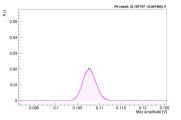
Our goal: smaller pixels, but same σ_t as LGADs!

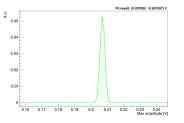

READOUT WITH ALTIROC ASIC



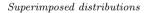
- ASIC ALTIROC 0V2 bonded to ALTIROC Testing PCB (2018, ver. 1807)
- IR scans: conducted using Particulars Scanning-TCT apparatus mounting IR laser (1064 nm)
- ALTIROC PCB mounted on a 3-axis computer-controlled mechanical stage with position resolution of less than 1 $\mu{\rm m}$
- Beta tests: ⁹⁰Sr source used for beta tests

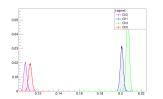
WAVEFORMS TCT - IR LASER

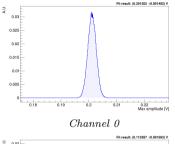

- Signals from IR laser interacting at the center of the sensor (between strip 1 and 3, as shown by red dot)
- Analog output of the ALTIROC
- Signals from channel 3 and 1 (closest to laser focus) have higher amplitude

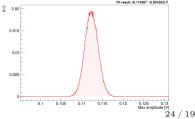


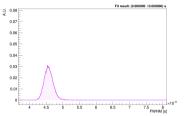
MAXIMUM DISTRIBUTIONS - IR LASER

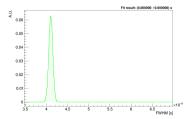

Channel 2



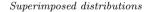


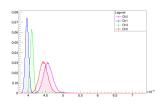

- Amplitude of signals acquired from **analog output** of the ALTIROC shaper for all 4 channels
- Amplitudes of channels 1 and 3 slightly different due to difficulty to focus laser on precise center between two strips caused by setup oscillations (details later)

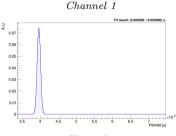

$Channel \ 1$

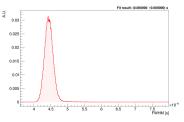


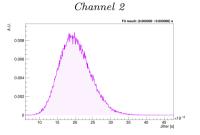
FWHM DISTRIBUTIONS - IR LASER

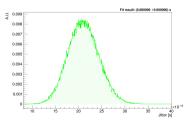




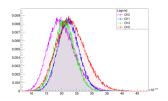



- FWHM of signals acquired from **analog output** of the ALTIROC shaper for all 4 channels
- Fast (~5 ns) signal compatible with published results for (DC-)LGAD sensors read-out via ALTIROC0

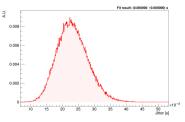




JITTER DISTRIBUTIONS - IR LASER

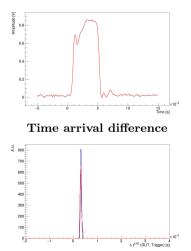

Channel 3

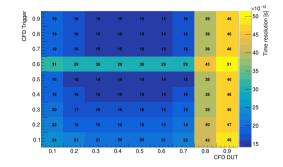
- Jitter of signals acquired from **analog output** of the ALTIROC shaper for all 4 channels
- Jitter distributions consistent for all 4 channels


$$jitter = \sigma_{noise} \left(\frac{dV}{dt}\right)^{-1}$$

Superimposed distributions

Channel 1 Fit result: /0.000000 +0.00000 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 ×10⁻¹² 10 15 20 30 40 Jitter [s]

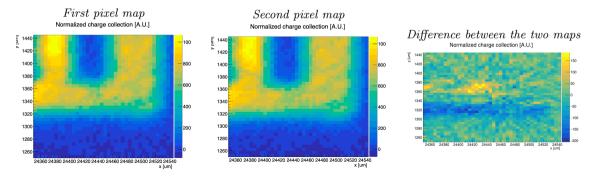




4D PERFORMANCES

TIME RESOLUTION

Digital waveform

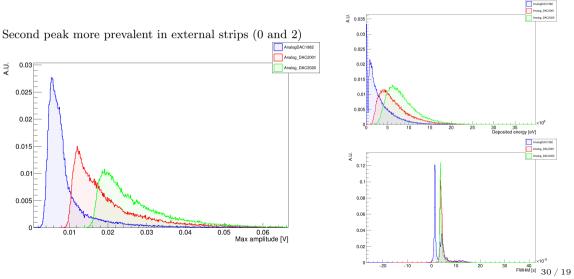


- Gaussian fit of Δt^{CFD} (Laser Trigger, Digital Channel)
- Computed for CFD levels between 10 and 90%
- Jitter down to $\sim \! \mathbf{14} \mathbf{ps}$, compatible with previous results

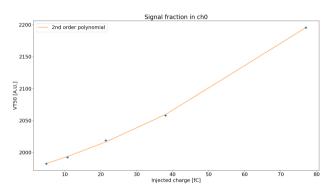
4D PERFORMANCES

Spatial resolution - Setup oscillations

- Measurement of spatial resolution or precise positions using this setup are not straightforward due to consistent oscillations of the setup
- Consecutive pixel maps using TCT show oscillations in both x and y axes of ${\sim}20\mu m$

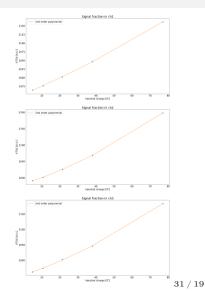


ALTIROC SPECIFICATIONS


TID tolerance	Inner region: 4.7 MGy
	Outer region: 2.0 MGy
Pad size	$1.3 imes 1.3 \mathrm{mm^2}$
Voltage	1.2 V
Power dissipation per area (per ASIC)	$300 \mathrm{mW} \mathrm{cm}^{-2} (1.2 \mathrm{W})$
e-link driver bandwidth	$320 \mathrm{Mbits^{-1}},640 \mathrm{Mbits^{-1}},\mathrm{or}1.28 \mathrm{Gbits^{-1}}$
Temperature range	−40 °C to 40 °C
SEU probability	< 5%/hour

Maximum leakage current	5μA
Single pad noise (ENC)	$< 1500 e^- = 0.25 \text{ fC}$
Cross-talk	< 5%
Minimum threshold	1 fC
Threshold dispersion after tuning	10%
Maximum jitter	25 ps at 10 fC
TDC contribution	< 10 ps
Time walk contribution	< 10 ps
Dynamic range	2.5 fC-100 fC
TDC conversion time	< 25 ns
Trigger rate	1 MHz L0 or 0.8 MHz L1
Trigger latency	10 µs L0 or 35 µs L1
Clock phase adjustment	100 ps

ANALOG DISTRIBUTION - EXTERNAL CHANNEL 0



S-CURVES

Value of VT50 of Complementary Error function (ERFC) plotted as a function of input charge (5 - 80 fC) for each channel Uncertainty on VT50 position from fit used as error bar in

the plot

