

CERN-RD50 CMOS timeline

17-19 November 2021 – Valencia (hybrid)

RD50

E. Vilella (Uni. Liverpool) – RD50 WS

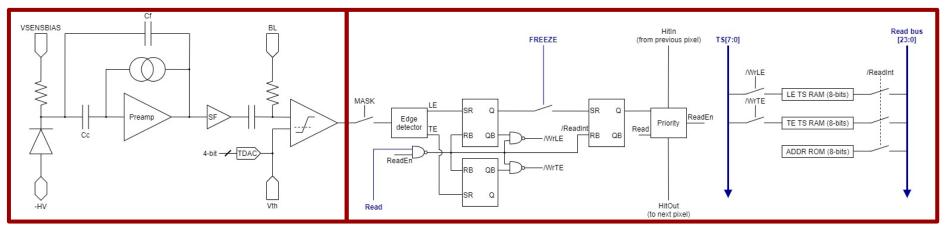
RD50-MPW2

- Very successful chip, but with limitations
 - Reduced number of rows and columns (8 x 8)
 - No pixel digital readout to identify particle hits
 - Very simple TX readout → some measurements too slow or not possible

RD50-MPW3

- Larger and more advanced matrix to further study HV-CMOS sensors
 - 64 rows x 64 columns
 - With in-pixel digital readout (FE-I3 style)
 - With optimised peripheral readout for effective pixel configuration and fast data TX
 - With all the lessons learned from RD50-MPW1/2
- Chip submission in November 2021 through an MPW shuttle run
- Resistivities: standard, 1.9k and >2k Ω·cm

TEST 750 um x 750 um	TEST 750 um x 750 um	750 um 750 um 750 um 600 um x x x x x								~1,000 um
		62 u 64 r	Analogue	matrix mpixels	m wide					-6,600 um
	(EOCs, FIFOs (32-hits depth), CU, slow control and blas block (3,968 um x 1,496 um, preliminary) Power routing lines (200 um wide)								
Chip guard rings + seal ring (150 um wide)										
~5,100 um										

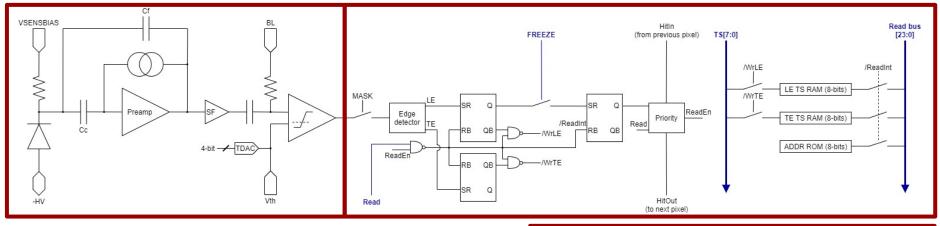


RD50-MPW3 – Pixel schematic

Analogue readout

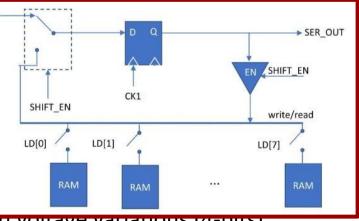
Digital readout

- Analogue readout from RD50-MPW2
- Digital readout, highly improved, from RD50-MPW1
- New in-pixel logic
 - To mask noisy pixels (MASK)
 - New priority circuit for less-area consuming alternative
 - Possibility to pause digitisation of new hits until readout is complete (FREEZE)
 - 8-bit SRAM shift register for serial configuration
 - Pixel-trimming to compensate for threshold voltage variations (4-bits)
 - Flag to mask noisy pixels (1-bit)
 - Signals to enable/disable calibration circuit (1-bit), SF output (1-bit), COMP output (1-bit)



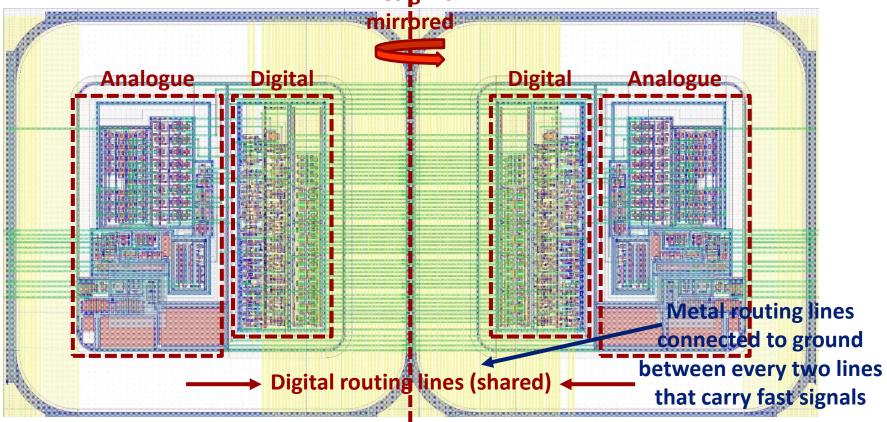
RD50-MPW3 – Pixel schematic

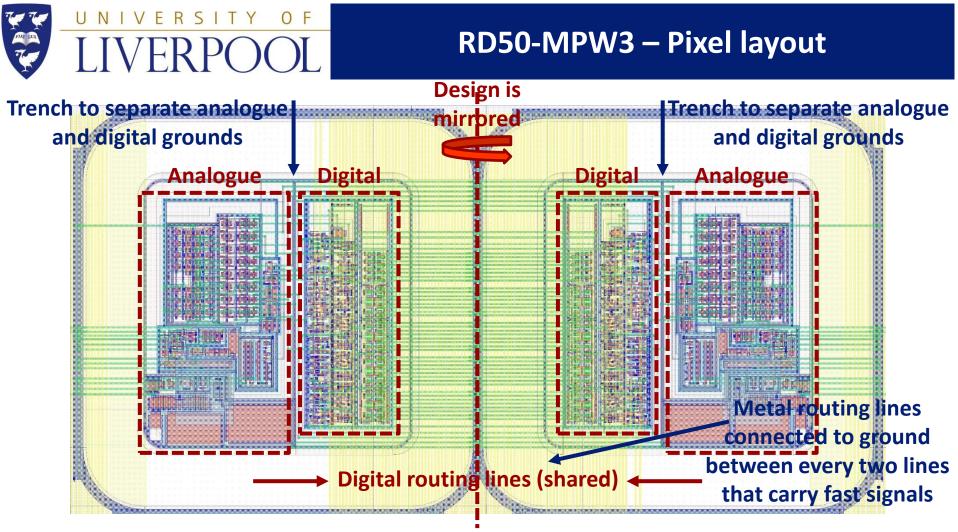
Analogue readout


Digital readout

- Analogue readout from RD50-MPW2
- Digital readout, highly improved, from RD50-
- New in-pixel logic
 - To mask noisy pixels (MASK)
 - New priority circuit for less-area consumi
 - Possibility to pause digitisation of new hit
 - 8-bit SRAM shift register for serial configu
 - Pixel-trimming to compensate for threshold voltage variations (4-bits)
 Flag to mask point give la (1, bit)
 R. Casanova, 38th RD50 WS

SER_IN


- Flag to mask noisy pixels (1-bit)
- Signals to enable/disable calibration circuit (1-bit), SF output (1-bit), COMP output (1-bit)


RD50-MPW3 – Pixel layout

Design is

- Double column scheme to alleviate routing congestion and minimise crosstalk
 - Pixels within double column share many signals $\rightarrow \sim x0.5$ less routing lines
 - Digital input/outputs (TS IN, TS OUT, ADDR), control signals (Read, Freeze, etc.)
- Pixel size is 62 μm x 62 μm

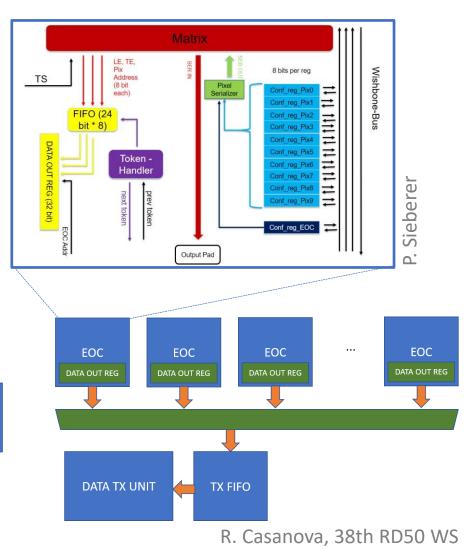
- Double column scheme to alleviate routing congestion and minimise crosstalk
 - Pixels within double column share many signals $\rightarrow \sim$ x0.5 less routing lines
 - Digital input/outputs (TS IN, TS OUT, ADDR), control signals (Read, Freeze, etc.)
- Pixel size is 62 μm x 62 μm

LIVERSITY OF

RD50-MPW3 – EOC + readout + slow control

New EOC architecture - Components

- FIFO stores hit data (LE TS, TE TS and ADDR)
- FSM reads double column
- Token mechanism to determine which EOC is read out

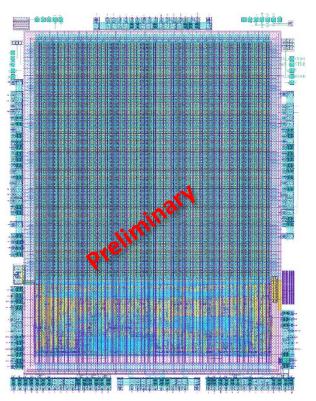

Readout

- Pixel is read out immediately after hit (if FIFO is not full)
- CU reads EOCs sequentially
- Data stored temporarily in TX FIFO
- Data TX unit with LVDS port @ 640 Mbps

CONTROL UNIT

Slow control

 Based on I2C protocol for external communication using internal Wishbone bus


RD50-MPW3 – Status

Logistics

- Funding request
 - With 11 RD50 institutes
 - Submitted to and approved by RD50
- PO
 - Sent from CERN to the foundry
 - This is always an adventure...

Design & submission

- We have encountered a number of last minute issues
 - Design team is working very hard to solve them in due time
- Deadline to submit is Monday 22.11.21 (although the foundry has confirmed they can manage a few days delay)

- RD50 prolongation request May 2018
 - M1: Characterization of the diodes and readout electronics of unirradiated and irradiated RD50-MPW1 samples (Q4/2018) → <u>Achieved</u>
 - M1.2 (new): Design and submission of RD50-MPW2 (Q1/2019) →
 <u>Achieved</u>
 - M1.3 (new): Characterization of unirradiated and irradiated RD50-MPW2 samples (Q1/2020 → Q3/2021) → <u>Achieved</u>
 - M1.4 (new): Design and submission of RD50-MPW3 (Q4/2021) →
 Ongoing
 - M2: Design and submission for fabrication of RD50-ENGRUN1 (Q4/2018)
 - M3: Characterization of unirradiated and irradiated RD50-ENGRUN1 samples (Q3/2019, Q3/2020)
 - M4: Characterization of irradiated backside biased RD50-ENGRUN1 samples for operation beyond 10¹⁶ n_{eq}/cm (Q4/2020)
 - M5: Studies of stitching process options (Q4/2021)
 - M6: Characterization of unirradiated and irradiated stitched samples (Q4/2022)

