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Motivation of semiconductor detector application for monitoring of proton beam loss in LHC machine: 
 
- installation of compact detectors in the vicinity of superconductive magnets, increase in sensitivity of 
monitoring the particle loss of proton beam, initiated by CERN BE-BI (Beam Div., Beam Instrumentation)  
 
The goal of the presented study:  
- further analysis of the results of the unique in situ irradiation test of Si detectors;  
- new findings in detector and radiation physics at low T 

Motivation 
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In situ irradiation tests  (the only method of  experimental study at 1.9 K)  

 

2012 – in situ irradiation test 1 at 1.9K, 6 weeks of operation:  

 

Si p+-n-n+  detectors; r ~ 10-15 kΩ, 300 mm; processed in Russia  
 

Irradiation:  

23 GeV protons beam fragmented into 400 ms spills   

 

Beam intensity 1.3×1011 p/cm2 per 400 ms spill (~1010 p/s on detectors) 

 Fluence to 1×1015 -1×1016 p/cm2     

 Beam position monitoring (BPM + Si beam telescopes) 

 

 Current pulse response, TCT, LeCroy WavePro,  
3 GHz bandwidth, 630 nm laser, width 45 ps 
 

   Laser illumination of the n+ contact 

 

Experiment 
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irradiation dose 
                                   5x1013 p/cm2                                                                             2.7x1014 p/cm2 

1st stage 

2nd stage 1st stage 

2nd stage 

No reflection as seen at lower F 
At higher F – details of fine structure 

Experimental results 
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Experiment: nonirradiated LGAD Simulation: irradiated LGAD 

E. Verbitskaya, et al., 
2016 JINST 11 P12012 

G. Kramberger, et al., 2015 JINST 10 P07006 

Charge multiplication in structure without built-in layer 

Motivation to consider multistage process with 
avalanche multiplication 
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Two stages of drift: 
    1st stage 
• initial hole drift from n+ to p+ 

• impact ionization and charge multiplication  
       initiated by holes at p+ 

         2nd stage 
• electron drift from p+ to n+ 

proton spill 

n+ p+ n 

proton spill 

laser hole drift 1st stage (hole drift) 

2nd stage (electron drift) 

further stages… 

If electric field near n+ contact is high: 
electrons initiate multiplication and 
3rd stage of charge collection (hole drift again) 

Multistage process of charge collection 
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1st stage approximation 

Signal construction 

Data treatment and simulations 

LOWER DOSE: 51013 p/cm2 
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difficult to perform exp. fit 

HIGHER DOSE: 2.71014 p/cm2 

ONLY 1st stage approximation 

+ accurate exp. fit 

(direct 𝜏𝑡𝑟
ℎ  extraction) 

A. Shepelev, et al., 39th RD50 workshop, Valencia, Spain, Nov 17-19, 2021 8/14 



Data treatment and simulations 

taking into account 
• initial nonuniformity 
• diffusion spreading 

2nd stage and pulse tail 

dash lines: simulated current responses 

𝑝 𝑥, 0 = 𝑝0𝑒
−𝛼𝑥 

complicated because of carrier cloud size  

Beer–Lambert law 
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Hole distribution during drift 
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Signal construction 

f(t) - the function defined by the change  
of charge in the detector determined by 
integration of p(x, t) 

𝑦 𝑡 =  𝑠 𝑡′ ℎ 𝑡 − 𝑡′ 𝑑𝑡′
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0

 

+ RC distortion 
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bias voltage → mean electric field   < 𝐸 >=
𝑉𝑏

𝑑
 

threshold 

Carrier transport characteristics 

hole parameters at 
F = 51013 p/cm2 

cross (0, 0) 

more accurate for  
higher dose  
because of exp. fit 
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Sum of Gaussian fit 

Parameter 
450 V 500 V 

S2 S3 S2 S3 

tm (ns) 398.7 403.2 398.7 403.2 

σ (ns) 3.0 ± 0.2 2.9 ± 0.3 3.3 ± 0.1 3.4 ± 0.4 

A (10-14 C) 3.3 ± 0.2 1.6 ± 0.1 5.0 ± 0.1 2.2 ± 0.2 

the result of the fit 

Dose comparison 

3rd stage is the drift of holes  
after impact ionization produced  
by electrons near n+ contact  

The time between maxima correlates with tdr with drift velocity below saturated, 
but the current maximum is determined by charge drifting inside the detector 

Third stage of charge collection 
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result for hole drift time drift velocity vs electric field 

< 𝑣𝑑𝑟>=
𝑑

𝑡𝑑𝑟
ℎ  

low electric field in between 

electric field distribution 

1st stage decay 
controlled by  
hole trapping 

 

Epmax > Enmax 

Electric field profile: low field 
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xp and xn are thin 
( 10 mm) 



Internal charge gain and h degradation rate 

trapping time constant vs eq. fluence 

𝟏

𝝉𝒉
= 𝜷𝒉𝑭 

𝜷𝒉 = 𝟑. 𝟔𝟓 × 𝟏𝟎−𝟏𝟓 cm2/ns 

at -10ᵒ C: 

(NIM A 481 (2002) 297) 

𝜷𝒉 = 𝟕. 𝟕 × 𝟏𝟎−𝟏𝟔 cm2/ns 

Internal charge gain 
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negative feedback due to carrier trapping 
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1.9 K: 



• In the unique experiment at 1.9 K, Si p+/n/n+ detector maintains operation as a regular diode structure with 
highly doped contacts.  

• The effect of sequential stages of charge multiplication was found. The third stage of charge collection was 
observed.  

• The developed procedure of TCT data treatment for irradiated Si detectors with avalanche multiplication 
allowed extraction of full set of carrier transport parameters and internal charge gain.  

• Comparison of the trapping time constant degradation rate at 1.9 K and room temperature showed fivefold 
increase of bh  at 1.9 K.   

 

New questions have arisen:  

conservation of the low-field region after polarization, 

 relaxation of  current response after spill escape. 

Conclusions 
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Thank you for your attention! 



16 

Why Epmax > Enmax ? 

At such a low temperature defect formation is not a well-known mechanism  
There is J.D. Watkins hypothesis that mobility of initial defects is different and 
at T < 4.2 K more donors (hole traps) are forming, while at a RT more acceptors 
(electron traps) are forming.  

J.D. Watkins 


