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Machine learning for accelerators
A physicist approach
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Machine learning: statistical learning
Kernel Methods, Gaussian learning
Trees and Boosting

Networks

Reinforcement learning

Explainable machine learning

The non learning part

Conclusion
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I approaches
I learn to reproduce: “supervised

learning” (e.g. regression)
I find structure: “unsupervised

learning” (e.g. isolation forests)
I learn environment: “reinforcement

learning” (e.g. AlphaGo)
I concepts

I Random variables, statistic
distribution

I prior, posterior, Bayes rule
I additive models, trees networks
I Bellman’s equation

We are drowning in information
and starving for knowledge

– Rutherford D. Roger

Machine Learning is about learn-
ing from the data, not about ap-
plication of a particular “intelli-
gent” technique.

– Elena Fol, IPAC’20

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 3

Machine learning

https://en.wikipedia.org/wiki/AlphaGo
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I approaches
I learn to reproduce: “supervised

learning” (e.g. regression)
I find structure: “unsupervised

learning” (e.g. isolation forests)
I learn environment: “reinforcement

learning” (e.g. AlphaGo)
I concepts

I Random variables, statistic
distribution

I prior, posterior, Bayes rule
I additive models, trees networks
I Bellman’s equation

„Fliegen tut auch ein Scheunen-
tor, wenn der Motor nur gut
ist.“1

Simon Brunnhuber
“With a big enough engine you can make

a barn door fly”
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Machine learning

https://en.wikipedia.org/wiki/AlphaGo
https://de.wikipedia.org/wiki/Simon_Brunnhuber


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Regularisation
I slow orbit feedback: Thikonov regularisation, finding orbit distortions, sklearn

Example
Orbit feedback
I Read orbit deviation
I Calculate correction → on diagonal
→ ridge

# bpm signals
b_A = np.array([x_bpm, y_bpm]).ravel()

# orbit response matrix
corr_mat = self.orb.get()
alpha = self.alpha.get()

# sci kit learn: regularisaton of the central diagonal
self.ridge = Ridge(alpha=alpha)
self.ridge.fit(corr_mat, b_A)
pos_corr = self.ridge.coef_

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 4

Statistical learning examples: regularisation I/II
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I Streak camera measurement
I Identify spots

x, y = np.fromfunction(lambda y,x: (x,y), im.shape)
val = im.ravel()
# Points above threshold
xr = x.ravel()[val>threshold]
yr = y.ravel()[val>threshold]
X = np.array([xr, yr]).T
# Make spots rather round ...
X_trans = X * np.array([1, .2])[np.newaxis, :]
y_pred = KMeans(n_clusters=7, random_state=0)

.fit_predict(X_trans)

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 5

Statistical learning example II/II
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I Streak camera measurement
I Identify spots

x, y = np.fromfunction(lambda y,x: (x,y), im.shape)
val = im.ravel()
# Points above threshold
xr = x.ravel()[val>threshold]
yr = y.ravel()[val>threshold]
X = np.array([xr, yr]).T
# Make spots rather round ...
X_trans = X * np.array([1, .2])[np.newaxis, :]
y_pred = KMeans(n_clusters=7, random_state=0)

.fit_predict(X_trans)
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Statistical learning example II/II
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4 2 0 2 4
3

2

1

0

1

2

3

I Linear regression → minimum distance
I Bayesian approach: most probable line
I Idea taken further:

I Set of probable functions
I covariance between

functions
I characteristic length


I data points → most probable function
I covariance → confidence bound
I further probing: most probable one (add noise

for exploration)

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 6

Gaussian process
Power of a simple idea
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H₂+10%N₂ 100%H₂

Laser e- beam

(a)

(b)

Plasma
source

Laser Quadrupole
doublet Cavity

BPM Profile
screen Spectrometer

dipole

ScreenOAP

Focus position:         target length 5 mm / 0.05 mm = 100x

Just scan it?

Doping:                                         0 to 100 % / 1 % = 100x
Gas density:  0.5x1018 to 1x1018 cm-3/0.05x1018 cm-3= 10x
Laser energy:                                    2 J to 3 J / 0.1 J= 10x

1 000 000 measurements 
@ 1 Hz → 11.5 days or

years worth of computing budget for simulations

Finding the optimum

Curse of dimensionality

technique which returns a probability distribution of
possible functions compatible with previous evaluations.
Thus, the model can not only predict the most probable
value of f at an unexplored location but it also provides an
uncertainty for this prediction. Since the goal is to maxi-
mize the objective function with as few direct evaluations
as possible, BO uses the surrogate model to determine the
most promising points to evaluate. To do so, the model
predictions and their uncertainties are combined into an
acquisition function which describes the strategy to deter-
mine the next parameters to sample. One of the most
commonly used acquisition functions is expected improve-
ment [11], i.e., the expected value of the improvement of a
new measurement over the current best sample. The
parameters which maximize the acquisition function are
selected as the input for the next direct evaluation. Other
choices of acquisition functions include upper confidence
bound [14], knowledge gradient [15], and entropy search
[16]. After the evaluation, the model is refined with the
newly gathered information. This process is repeated
iteratively to find the input parameters that maximize the
objective function.
Here, we apply Bayesian optimization to a laser-plasma

accelerator, which uses localized ionization injection in
combination with optimal beam loading to generate high-
quality electron beams [17]. To separate the injection from
the acceleration of the electron bunch, we use a plasma
profile as shown in Figs. 1(d)–1(f). In a short region of
nitrogen-doped hydrogen, inner shell electrons are first
injected via ionization injection [18–20] and then sub-
sequently accelerated in a plasma density plateau (n0)
formed from pure hydrogen. The final electron energy

spread is determined by the initially injected phase space,
the accumulation of correlated energy spread induced by
the strong accelerating gradient, and an effect known as
beam loading [21–25], which is driven by the current
profile of the injected bunch and modifies the longitudinal
accelerating field. When balancing those effects, the
combined wakefield and beam loading field effectively
result in a constant accelerating field over the entire bunch
length [17]. In turn, every variation of the system that has
an effect on the bunch charge, current profile, or the
amplitude of the wakefield, will directly influence the
energy spread of the accelerated electron bunch.
The influence of the dominant parameters deviating from

the optimum setting can be summarized as follows. Higher
laser energies drive a stronger wakefield, but also increase
the injected charge due to higher intensity in the N2-doped
region, which overloads the wakefield and results in a
positively chirped bunch. The focus position determines the
laser intensity in the injection region and thus the bunch
charge. Shifting the focus toward the end of the plasma can
therefore compensate higher laser energies and overloading
the wake. The charge of the beam can also be controlled by
the N2 concentration as it determines the density of
electrons available for injection. However, since the outer
shells of nitrogen release five electrons to the plasma
background, the N2 concentration also scales the plasma
density peak at the beginning of the target and the negative
density gradient between doped and pure hydrogen. The
change of the plasma wavelength in this transition roughly
determines the length of the injected bunch. Finally, the
plasma density in the plateau sets the plasma wavelength
and wakefield amplitude, which limits the bunch length and
its final energy. Although the main influence of each of
these parameters is conceptually known, their complex
interplay, as well as dynamic effects like the evolution of
the drive laser and the wake make it difficult to study the
system beyond such simple considerations. Particle-in-cell
simulations that capture the full physics are required.
In the following, we combine the Bayesian approach

with the spectral, quasicylindrical PIC code FBPIC [26,27]
to identify the optimum working point in the complex
parameter space that generates high-quality electron beams.
To optimize the spectral density of the electron bunch,

we maximized the objective function f ¼ ffiffiffiffi

Q
p

Ẽ=ΔE. Here,
Ẽ is the median energy and ΔE is the median absolute
deviation (mad) of the energy, which was found to be the
most robust measure for the beam energy spread. Reducing
the energy spread at the same time as maximizing the beam
charge is for example of interest to drive a future free-
electron-laser [7] which puts limitations on the allowed
spectral width of the electron beam while the radiation
output scales strongly with the beam charge and current.
The objective function uses a scaled bunch charge,

ffiffiffiffi

Q
p

, so
as to promote beams with smaller energy spread over
higher charge beams. We varied parameters that are easily

FIG. 1. Optimization PIC simulations of localized ionization
injection: longitudinal electron phase spaces (a)–(c) and corre-
sponding setups (d)–(f) with tunable nitrogen-hydrogen mixture
(purple) and pure hydrogen (blue) region, plasma density (gray)
and variable laser energy and focus position (red line). (g) The
objective function,

ffiffiffiffi

Q
p

Ẽ=ΔE, a measure for the spectral density,
improves during the optimization.

PHYSICAL REVIEW LETTERS 126, 104801 (2021)

104801-2

Sören Jalas et al., “Bayesian Optimization of a Laser-Plasma Accelerator” [1]

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 7

Gaussian process: laser plasma optimisation
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I Splitting fields in “common areas”
I Learning: when to split using which

variable
I Boosting: chain trees: have next one

predict residuals from the previous
ones

I Random forests: tress split
randomly, combine results →
outliers Isolation forests

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9

|
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FIGURE 9.2. Partitions and CART. Top right panel
shows a partition of a two-dimensional feature space by
recursive binary splitting, as used in CART, applied to
some fake data. Top left panel shows a general partition
that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the
partition in the top right panel, and a perspective plot
of the prediction surface appears in the bottom right
panel.
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recursive binary splitting, as used in CART, applied to
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that cannot be obtained from recursive binary splitting.
Bottom left panel shows the tree corresponding to the
partition in the top right panel, and a perspective plot
of the prediction surface appears in the bottom right
panel.
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Trees
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35

Isolation Forest (IF)

• Forest consists of several decision trees

• Random splits aiming to “isolate” each point.

• The less splits are needed, the more “anomalous”

• Contamination factor: fraction of anomalies to be expected in the given data

Conceptual illustration of Isolation Forest algorithm

I Target: identify “broken” BPMs
I Forest: split up
I Isolation forests: randomly split

many times → outliers split of early

See E. Fol et al. “Detection of faulty
beam position monitors using
unsupervised learning”, [2] [3]

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 9

Example: BPM cleaning at LHC
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BPM signal properties as input features

Harmonic properties of BPM turn-by-turn signal

• Betatron tune (main frequency)

• Amplitude

• Noise to amplitude ratio

Contamination factor
• First obtained from measurement statistics
• Refined on simulations introducing known 

BPM faults.

Input features and 2D-projection of anomaly 
detection in BPM data.

I Target: identify “broken” BPMs
I Forest: split up
I Isolation forests: randomly split

many times → outliers split of early

See E. Fol et al. “Detection of faulty
beam position monitors using
unsupervised learning”, [2] [3]

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 9

Example: BPM cleaning at LHC
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37

IF in the LHC operation: β-beating computed from cleaned BPM data

✓ IF is fully integrated into optics measurements 
at LHC

✓ Successfully used during beam commissioning 
and machine developments in 2018 under 
different optics settings

• Comparison between using BPM data cleaned with traditional techniques only vs. additionally applying IF

I Target: identify “broken” BPMs
I Forest: split up
I Isolation forests: randomly split

many times → outliers split of early

See E. Fol et al. “Detection of faulty
beam position monitors using
unsupervised learning”, [2] [3]

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 9

Example: BPM cleaning at LHC
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I Simple basis functions with weights
I network of functions → complex task
I inference (prediction) → forward pass
I learning (“fit network to data”) → backward pass: networks with gradient
I convolution: learn to combine data
I long short term memory: learn from history, but also when to ignore history!

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 10

Network I/II
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I Layers of neurons: processing units
I activation functions: select range,

weight
I build automatically gradient
I flexible, large set of parameters
I trained on large datasets →

processed in batches

x1

x2

x3

ỹ1

ỹ2

Hidden
layer

Input
layer

Output
layer

10 0 100

10

ReLU
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Network II/II
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I Light source: beam size → tight
control, beam size influenced by
emittance exchange horizontal →
vertical ALS [4]:

I target: insertion device change →
feed forward

I data showed: effect delayed →
LSTM

from tensorflow.keras import Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import LSTM, Dropout, Dense
from tensorflow.keras.optimizers import Adam

inputs = Input(shape=(60, 152))
x = LSTM(128, return_sequences=True)(inputs)
x = Dropout(0.1)(x)
x = LSTM(64, return_sequences=True)(x)
x = Dropout(0.1)(x)
x = LSTM(32, return_sequences=False)(x)
x = Dropout(0.1)
outputs = Dense(1)

model = Model(inputs=inputs, outputs=outputs, name='vertical_beam_size')
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LSTM for beam size
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I Light source: beam size → tight
control, beam size influenced by
emittance exchange horizontal →
vertical ALS [4]:

I target: insertion device change →
feed forward

I data showed: effect delayed →
LSTM

from tensorflow.keras import Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import LSTM, Dropout, Dense
from tensorflow.keras.optimizers import Adam

inputs = Input(shape=(60, 152))
x = LSTM(128, return_sequences=True)(inputs)
x = Dropout(0.1)(x)
x = LSTM(64, return_sequences=True)(x)
x = Dropout(0.1)(x)
x = LSTM(32, return_sequences=False)(x)
x = Dropout(0.1)
outputs = Dense(1)

model = Model(inputs=inputs, outputs=outputs, name='vertical_beam_size')
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LSTM for beam size
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I Markov decision process: current state → predict future (e.g. chess game)
I actor (controller) → applying actions (control signal)
I environment (plant) → state
I rewards

I Learning
I actor: policy → how to play (e.g. chess: next move)
I value function: long term reward for actions (e.g. chess: move more likely to win)

I learning: long term outcome, estimate variation
I solution found: Bellman’s equation → sufficient each step optimal

I control learned “playing games”: good nerves when operating on beam →
explainable AI

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 13

Reinforcement learning: motivation
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I Harmonic orbit distortion
I no action: yellow
I classical: steerers → orbit response

matrix → SVD → correction
I Here: SVD + reinforcement agent

5 10 15 20 25 30 35 40
f [Hz]

0.0

0.1

0.2

0.3

0.4

0.5

A 
[

m
]

9.8 9.9 10.0 10.1 10.2
0.0

0.1

0.2

0.3

0.4

0.5

See Luis Vera Ramirez THAL01
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Orbit optimisation
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I Synchrotron light sources:
I deflected electrons → emit light
I short bunches → coherent light

emission → ↑ Power → destabilises
bunch

I mitigation: RF control ←
reinforcement learning

I dedicated hardware → ≈ 10 µs [5]

WANG et al.: ACCELERATED DEEP RL FOR FAST FEEDBACK OF BEAM DYNAMICS AT KARA 1795

Fig. 2. SR micro-bunching structures in the longitudinal phase space density
ρ (a) and the resulting CSR power variations over time (b), where Ts denotes
the synchrotron period (∼100 μs).

It has been demonstrated that by dynamically acting on the
radio frequency (RF) cavities of the accelerator the fluctuations
of the CSR emission can be reduced and the stability of the
emission can be improved. To successfully control the CSR
power fluctuations, a fast feedback system with measurement
of the CSR signal, intelligent controller, and actuator with a
total latency in the order of microseconds is needed. A hard-
ware platform for this purpose has been developed that will
serve to optimize the beam properties at KARA.

The self-interaction in short electron bunches can be math-
ematically described by the CSR-induced wake potential [4]

VCSR(q) =
∫ ∞

−∞
ρ̃(ω)ZCSR(ω)eiωqdω. (1)

The CSR wake potential is added as a perturbation to the
Hamiltonian. Here, q = (z − zs)/σz,0 denotes the generalized
longitudinal position, ρ̃(ω) represent the Fourier-transformed
longitudinal bunch profile, and ZCSR(ω) is the CSR-induced
impedance of the storage ring. The additional potential in (1)
can be interpreted as a perturbation to the accelerating RF
potential, and thus results in a perturbation of the synchrotron
motion within the bunch. It causes the formation of microstruc-
tures with a dynamic evolution at time scales in the order of
the synchrotron period Ts .

The effect of the instability on the charge density in the
longitudinal phase space and the CSR power is shown in
Fig. 2. The CSR self-interaction of the bunch causes the
formation of microstructures in the longitudinal phase space
density shown in Fig. 2(a). Their continuous variation leads to
fluctuations in the emitted CSR power as a function of time in
Fig. 2(b). Real-time control of the longitudinal beam dynamics
during the occurrence of the micro-bunching instabilities can
stabilize the fluctuations of the emitted CSR and therefore
optimize and tailor the THz light for different applications [4].

II. CONTROLLER DESIGN WITH

REINFORCEMENT LEARNING

To stabilize the CSR micro-bunching instability, a machine
learning approach based on reinforcement learning (RL) is
selected. The goal of RL is to find the optimal sequence
of decisions to maximize the expected reward by interacting
with the controlled system. The interactions with a process
make RL different to unsupervised and supervised learning.

Fig. 3. Agent-process interaction in an RL control loop [8].

Unsupervised learning is typically used to detect intrinsic
structures in a collection of unlabeled data while supervised
learning aims to learn a mapping from input to output given
as a collection of labeled examples. In contrast, RL algorithms
are capable to learn purely from interaction with a real
environment. As no classical controller design for the CSR
problem is currently available, RL seems to be a promising
approach.

In the RL algorithm design there are two major components
as shown in Fig. 3, namely the agent and the environment. The
state s is calculated from the measured information that can
be obtained from the process. The state s is not necessarily
equivalent to the complete description of the dynamics of
the controlled system. The agent has a policy that maps the
perceived state of the environment to an appropriate action.
The RL agent interacts with its environment in discrete time
steps. At each time step t, the agent receives the current state
st and the reward rt . It then chooses an action a, which
is subsequently sent to the environment. The environment
moves to a new state st+1 and the reward rt+1 associated
with the transition (st , a, st+1) is determined. The goal of an
RL agent is to learn a policy, which maximizes the expected
cumulative reward. Several RL algorithms are available and
currently under study, like policy gradient (PG), proximal
policy optimization (PPO) [5], and trust region policy opti-
mization (TRPO) [6]. For the development of a hardware
loop in this article, the deep deterministic policy gradient
(DDPG) [7] algorithm has been employed.

III. HARDWARE IMPLEMENTATION

Preliminary studies demonstrate that the dynamic modula-
tion of the RF amplitude seems to be a particularly suitable and
effective choice to counteract the CSR-induced perturbation.
The influence of RF modulations on the micro-bunching
dynamics has also been tested experimentally, for example,
in [9], [10]. An adaptive RF modulation scheme is a promis-
ing proposition to exert influence on the longitudinal beam
dynamics of the micro-bunching instability as it provides the
required flexibility to respond to the varying perturbation by
the CSR wake potential.

To build a control loop and to stabilize the CSR emission
with high intensity and low fluctuation, a fast detector for beam
diagnostics, and an RL hardware platform are required. These
two components close the control loop as shown in Fig. 4.
A commercial zero-biased Schottky barrier diode detector
is employed to measure the THz radiation. A quasi-optical

Authorized licensed use limited to: HZB Helmholtz-Zentrum Berlin. Downloaded on October 07,2021 at 13:58:30 UTC from IEEE Xplore.  Restrictions apply. 

P. Schnizer, Machine learning for accelerators, DS/ML Workshop ICALEPS’21 15

Coherent synchrotron radiation control
Development KIT/KARA



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Accelerators: expensive device → beam experiment access: precious resource: e.g.
broken beam position monitor → effect on controller
I Network learns problem → black box
I Explore black box

I find simplified model: e.g. statistical
learning one

I train model using original data and
trained network

I understand network’s behaviour

Methods
I Local interpretable model-agnostic

explanations (LIME)[6]: behaviour local
area in neighbourhood

I SHAP(ly) values[7] → prediction of
cooperative players → influence of
different features
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Life cycle
I Data access
I Algorithm
I Deployment
I Monitoring

Time
I learning: data sources: consistent

time
I interaction: minimize delays
I new installations: steady state

machines → transient ones

Data quality
I constient access (archivers)
I metadata, calibration
I data cleaning, scaling

Deployment
I accelerators: lifespan > 30 years
I software stack: technical debts ↓:

minimise dependencies e.g.
notebooks → input output
controllers

I versioning, roll back
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I (Short) overview over methods and fields
I More details: following talks today, conference
I Let data science experiment → reveals new insight
I Domain ↔ data science: closely work together: exchange

I knowledge
I experience
I best practise
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