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Network Architecture - Fully Supervised
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y = P (fail|signals)

Input is a stacked vector (6× 1820,≈ 250)
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Results on the classifier - Properly Functioning
Signals y = P( f ail|signal)

Training data provided by Annika Eichler, more details in [NPLR18].Anonin Sulc (DESY) ML for Failure Detection on RF Cavities October 15, 2021 5 / 12



Results on the classifier - Failing Cavity
Signals y = P( f ail|signal)

Training data provided by Annika Eichler, more details in [NPLR18].Anonin Sulc (DESY) ML for Failure Detection on RF Cavities October 15, 2021 6 / 12



Future Work
• Experimenting with different models like

• one-class classifiers [RVG+18],
• variational autoencoders for better interpretability of results [AC15]
• or anomaly GANs for clear identification of failures [SSW+17])

• Normalization and accurate labelling.
• Classify different classes of failures.

Quench Jump in decay
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Spare slides
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Future Work - Deep One Class Semi-Supervised Learning

Loss = ∑
x∈X

‖φ(x)− c‖︸ ︷︷ ︸
searching a mapping φ to a common c [RVG+18]

+ ∑
x∈X

‖φ(x)− c‖y︸ ︷︷ ︸
labelled samgples φ [RVG+19]
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Future Work - AnoGAN
Adveserial traning on healthly images [SSW+17].

• arg minzγ L(zγ) = arg minzγ(1− λ)LR(zγ) + λLD(zγ)

where
LR(zγ) = ∑ |x− G(zγ)| and LD(zγ) = ∑ |f(x)− f(G(zγ))| (1)

where f is discriminator feature layer.
• |x− G(zγ)| can be used to identify anomalous regions.
• Every test same must have their zγ estimated.
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