

Gegenbauer Goldstones

Wednesday 17 November 2021 11:00 (1 hour)

We investigate radiatively stable classes of pseudo-Nambu-Goldstone boson (pNGB) potentials for approximate spontaneously broken $\text{SO}(N+1) \rightarrow \text{SO}(N)$. Using both the one-loop effective action and symmetry, it is shown that a Gegenbauer polynomial potential is radiatively stable, being effectively an eigenfunction' from a radiative perspective. In Gegenbauer pNGB models, one naturally and automatically obtains $v \propto f/n$, where $n \in 2\mathbb{Z}$ is the order of the Gegenbauer polynomial. For a Gegenbauer Higgs boson, this breaks the usual correlation between Higgs coupling corrections and v/f tuning. Based on this, we argue that to conclusively determine whether or not the Higgs is a composite pNGB in scenarios with up to $\mathcal{O}(10\%)$ fine-tuning will require going beyond both the Higgs coupling precision and heavy resonance mass reach of the High-Luminosity LHC.

Presenter: DURIEUX, Gauthier (CERN)