Dark Matter Results and Prospects with ANTARES and KM3NeT

Sara Rebecca Gozzini

on behalf of the ANTARES and KM3NeT Collaborations

Instituto de Física Corpuscular (IFIC), University of Valencia and CSIC

March 31, 2022

Dark Matter: the most striking missing block in the Standard Model

New particle outside the Standard Model, with properties learned from observational evidence

- Neutral
- Stable on cosmological scales
- Reproduces correct relic abundance
- Not excluded by current searches
- No conflicts with BBN or stellar evolution

Many candidates in particle physics (WIMPs, axions, gravitino, ...)

Dark Matter: detection

To be detected, weakly interacting dark matter particles could:

Be produced in collisions
Production searches
Colliders
Challenge: energy, luminosity

Scatter against SM particle
Direct searches
Underground facilities
Challenge: shield BG

Annihilate into SM particles
Indirect searches
Astrophysical sources
Challenge: volume (low fluxes)

Common challenge: signal identification

Astrophysical sources: ν (and γ) as dark matter probes

WIMP miracle: required interaction strength is of the same size as the known weak interaction. Universality: despite numerous models with differences in the details. \rightarrow

It is possible to predict fluxes of SM products from WIMPs decay or pair-annihilation.

WIMP WIMP
$$\xrightarrow{\text{ANN}}$$
 interm. channel $\rightarrow \nu \overline{\nu} + X$
WIMP $\xrightarrow{\text{DEC}}$ interm. channel $\rightarrow \nu \overline{\nu} + X$

How much dark matter?

The amount of dark matter and its spacial distribution is described through the J-factor

$$J_{
m ANN} = \int_{\Omega} d\Omega \int_{I}
ho^{2}(r(heta,\phi)) dI \ \ {
m or} \ \ J_{
m DEC} = \int_{\Omega} d\Omega \int_{I}
ho(r(heta,\phi)) dI$$

For dark matter density ρ in source at sky coord. (θ, ϕ) , seen of size Ω over line of sight I

An instrument like ν telescope does not point to a specific sky direction \rightarrow best dark matter sources are: Galactic Centre (extended and relatively close) or Sun (very close)

Process and measurement

Measurement = number of outcoming events \rightarrow translates into number of processes.

$$rac{n}{t} = rac{1}{2} \langle \sigma v \rangle \int_0^{M_{
m WIMP}} rac{dN}{dE} dE \, rac{1}{4\pi} \, J rac{1}{M_{
m WIMP}^2} \, \mathcal{A}(M_{
m WIMP})$$

The probability for **one** process to happen is \propto velocity of projectile $\times \sigma$.

But projectile (WIMPs) are non-relativistic $\rightarrow v \ll c \Rightarrow$ only know a velocity distribution \Rightarrow limit on velocity-averaged cross-section $\langle \sigma v \rangle$.

Mass: free to span a wide range: searches performed with ANTARES, ORCA and ARCA.

ANTARES and KM3NeT

Cherenkov detectors instrumenting water with a grid of photomultipliers organised in lines

Zoom on the layout of the KM3NeT building block

ORCA and ARCA same design

same DOM holds 31 PMT

ARCA: 90 m inter-string ARCA: 36 m inter-DOM ORCA: 23 m inter-string ORCA: 9 m inter-DOM

ν telescope data and working principle

Look through the Earth for lepton tracks from $\nu \to I$ conversion. $\sigma_{\nu \to I} \sim 10^{-38}$ cm² at 1 GeV!

- Work at very faint signal rates instrumenting large reservoirs of transparent medium
- Need excellent angular resolution for directional reconstruction (water has larger scattering length than ice: better angular resolution)
- Need algorithms for energy reconstruction relying on Monte Carlo simulations
- BG suppression (water has noise from radioactive ⁴⁰K decays, natural luminescence)

Dark Matter: which detector

Dark Matter: example of analysis method

Unbinned maximum likelihood is used to obtain the most likely number of signal events n_s^*

$$\mathcal{L} = \prod_{i}^{n_{TOT}} \left[n_{s} \cdot P_{s}(\text{angle}, N_{\text{HIT}}, \beta) + n_{b} \cdot P_{b}(\text{angle}, N_{\text{HIT}}, \beta) \right]$$

PEX map with 30 signal events

Limits on DM annihilation from the Galactic Centre: ANTARES

ANTARES data Jan. 2007 - Feb. 2020 (11174 tracks, 225 showers, 3845 days lifetime) is compatible with background [Phys. Lett. B 805, 135439 (2020)]

Limits on DM annihilation from the Galactic Centre: KM3NeT/ARCA

Sensitivity of ARCA-230 (1 year) [PoS(ICRC2019)552] + search in first data taken with ARCA-6 out soon!

Searches towards the Sun: ANTARES

- In equilibrium between capture and annihilation
- Sensitive at low velocities (= easier capture)
- ullet Clean: if signal o direct interpretation (astro bg well known)

Sun has known isotopic abundance \Rightarrow sensitive to WIMP-nucleon cross section for spin-dependent and spin-independent case (odd or even atomic number)

Searches towards the Sun: KM3NeT

The potential of KM3NeT looking for dark matter was estimated for the Sun (ORCA) where low energies are favoured [PoS(ICRC2019)536].

Spin-dependent ORCA-115 5 years sensitivity

Spin-independent ORCA-115 5 years sensitivity

...coming soon ORCA-6 first data! limits

Multi-experiment combination

ANTARES and IceCube have conducted a combined-likelihood search in their joint data set: [Phys. Rev. D 102, 082002 (2020)]

Interest in starting a joint $\gamma + \nu$ analysis, involving MAGIC, HESS, VERITAS, Fermi and ANTARES + IceCube, considering common channels and yield via EW corrections

Summary of results and references

- ANTARES has searched for dark-matter induced ν from the Galactic Centre using all-flavour data from 2007 \to Feb. 2020. No dark matter.
- Same is being searched in KM3NeT/ARCA (6 lines) ... out soon
- Search for dark matter annihilations in the Sun with ANTARES in 2007-2019 data: see talks by Chiara Poiré and Daniel López Coto in this workshop.
- Same with ORCA (6 lines) ... out soon
- Expected sensitivities with KM3NeT: [PoS(ICRC2019)552] (Galactic Centre), [PoS(ICRC2019)536] (Sun).
 - Search for heavy DM in secluded scenarios in ANTARES data: see talk by Filippo Sala in this workshop
 - Search for very heavy (EeV) DM using ANTARES public data: see talk by Jeff Lazar in this workshop