

TITI (Le Cube

How to approach this topic?

- You'll hear a whole bunch of IceCube talks:
 - "Neutrino lines in DM searches" Juan
 - "Dark Matter Decay and Annihilation to Neutrinos" Diyaselis
 - "DM Searches in the Galactic Centre with IceCube" Nadege
 - "Decaying Dark Matter at IceCube and its Signature in High-Energy Gamma-Ray Experiments" - Barbara
 - "DM from the center of the Earth with IceCube" Giovanni

In addition, we have talks on DM searches using ANTARES, KM3NeT and GVD

- IceCube has published a few papers on the topic
 - ≈ 20 Published analyses
 - ≈ 24 PhD thesis on the topic

You'll be hearing a lot about neutrino detectors and probably be bored by the question: "What is IceCube?"

86 Strings with 60 DOMs

Complete since 2010

6 denser strings called DeepCore

What is IceCube?

As an approximate rule of thumb:

- 150 m Attenuation length
- 30 m Scattering length
- In water:
 - 30 m Attenuation length
 - 150 m Scattering length

contend with K40 decay or

bioluminescence!

TITI Con the

Performing a DM analysis using IceCube I

Lc e C u b e

Performing a DM analysis using IceCube II

Choosing IceCube Analyses Introduction Perfor -1400Is IceCube right you? -1600Let's talk ener -1800

┈╙ 100 GeV "Track" Everything looks like a Very few cascade* hits at low energies So, you've change the neutrino -2000spectrum someho scattering For low -2200energies, only DeepCore -2400-200-4000 200 400

"Dust Layer" shows an increase in attenuation and

I c e C u b e

Performing a DM analysis using IceCube III

3/28/2022

South

Dark Ghosts - Granada - SMB

TITI Con Curba

The main background(s) - Sources

- A DM analysis will have two main backgrounds*:
 - The atmospheric background
 - μ For down-going searches*
 - ν For any type of search below 100 TeV*
 - The diffuse astrophysical background
 - ν For searches above 100 TeV*

*In General: There are specific searches where these rules of thumb don't apply

The main background(s) — Treatment I

This depends on the type of ν -Signal you expect:

- Diffuse?
 - Southern Sky?
 - -> I think you're lost
 - Northern Sky?
 - What's the spectrum?
- Non-diffuse?
 - Good choice!
 - What's the spectrum?

If it isn't a power-law, you're one of the lucky ones!

The main background(s) - Treatment II

Two Examples:

TITI Con the

One Final Thing

There are two main* types of neutrino signals: Tracks or Cascades

stIgnoring au

Cascades

The choice on what to use depends on what you want

Energy Direction

Detector μ Earth

Tracks

CC DIS ν_{μ}

- ✓ Better energy resolution
- ✓ Smaller background (x3)
- ✓ Larger Signal (x3)
- Directional Reconstruction

Combination is challenging

- ✓ Directional Reconstruction
- Energy reconstruction

TITI (c e C u b e

So, what type of analyses do we have?

Name	Diffuse?	Power-Law	Northern-Sky?	•
Galactic Center	×	×	×	✓
DM-Nucleon Interaction	×	×	✓	✓
Sun	×	*	✓	✓
Galactic Halo	✓	*	×	✓
Earth	×	*	✓	✓

See the bibliography for examples

Annihilations
/Decays

So what is currently in the works?

Ice Cube

Current Analyses I

Last year's ICRC contributions: https://arxiv.org/html/2107.06966

- "Search for Secluded Dark Matter with 6 years of IceCube Data" Christoph Toennis, arXiv:2107.10778
- "A search for Neutrinos from Decaying Dark Matter in Galacy Clusters and Galaxies with IceCube" Minjin Jeong, arXiv:2107.11527
- "Search for Dark Matter from the Center of the Earth with 8 Years of IceCube Data" Giovanni Renzi, arxiv:2107.11244
- "Indirect Searches for Dark Matter in the Galactic Center with IceCube" Nadège Iovine, arXiv:2107.11224
- "Constraining Non-Standard Dark Matter-Nucleon Interactions with IceCube" Lily Peters, arXiv:2108.05203
- "Dark Matter Neutrino Scattering in the Galactic Center with IceCube" Adam McMullen, arXiv:2107.11491
- "Searching for Dark Matter from the Sun with the IceCube Detector" Jeffrey Lazar, doi: 10.22323/1.395.0020

Contributions here:

- "Neutrino lines in DM searches" Juan A.Aguilar
- "Dark Matter Decay and Annihilation to Neutrinos" Diyaselis Delgado Lopez
- "Decaying Dark Matter at IceCube and its Signature in High-Energy Gamma-Ray Experiments" Barbara Skrzpek

Ice Cube

Current Analyses II

"Searching for Dark Matter from the Sun with the IceCube Detector" – Jeffrey Lazar, doi: 10.22323/1.395.0020 Offers world leading This work limits for the W^+W^- IC 2016 $W^{+}W^{-}$ 10^{-37} PPPC --- χατον (PYTHIA) and $\tau^+\tau^-$ channels! - χαrον (BRW) — WimpSim - $\tau^+\tau^$ $b\bar{b}, m_{\chi} = 10^3 \,\text{GeV}$ $b\bar{b}, m_{\chi} = 10^2 \,\text{GeV}$ $b\bar{b},\ m_\chi=10^4\,\mathrm{GeV}$ **IceCube Work in Progress** DM can be 10^{-2} 10^{-38} captured in the sun after scattering off Table 10⁻³⁹ nuclei 0.6 1.0 0.2 0.6 1.0 0.2 $x = E_{\nu}/m_{\gamma}$ $x = E_{\nu}/m_{\gamma}$ $x = E_{\nu}/m_{\chi}$ $\sigma_{\chi N}^{\rm SD}$ $W^+W^-, m_{\chi} = 10^2 \,\text{GeV}$ $W^+W^-, m_\chi = 10^3 \,\text{GeV}$ $W^+W^-, m_{\chi} = 10^4 \,\text{GeV}$ 0.5 10^{-40} 10^{-4} 1.0 0.2 10^{-5} 10^{-41} $x = E_{\nu}/m_{\gamma}$ $x = E_{\nu}/m_{\gamma}$ Tested different signal 10^{3} 10^{4} generators

 $m_{\chi} [{\rm GeV}]$

TITI Con the

Current Analyses III

"Constraining Non-Standard Dark Matter-Nucleon Interactions with IceCube" - Lily Peters,

arXiv:2108.05203

$$O_{1} = \mathbb{1}_{\chi N} \qquad O_{11} = i\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \mathbb{1}_{\mathbb{N}}$$

$$O_{3} = i\hat{\mathbf{S}}_{N} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right) \mathbb{1}_{\chi} \qquad O_{12} = \hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right)$$

$$O_{4} = \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{S}}_{N} \qquad O_{13} = i\left(\hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp}\right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right)$$

$$O_{5} = i\hat{\mathbf{S}}_{\chi} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right) \mathbb{1}_{\mathbb{N}} \qquad O_{14} = i\left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left(\hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp}\right)$$

$$O_{6} = \left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \qquad O_{15} = -\left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left[\left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right) \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right]$$

$$O_{7} = \hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp} \mathbb{1}_{\chi} \qquad O_{17} = i\frac{\hat{\mathbf{q}}}{m_{N}} \cdot \mathcal{S} \cdot \hat{\mathbf{v}}^{\perp} \mathbb{1}_{\mathbb{N}}$$

$$O_{8} = \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp} \mathbb{1}_{\mathbb{N}} \qquad O_{18} = i\frac{\hat{\mathbf{q}}}{m_{N}} \cdot \mathcal{S} \cdot \hat{\mathbf{S}}_{N}$$

$$O_{9} = i\hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \frac{\hat{\mathbf{q}}}{m_{N}}\right) \qquad O_{19} = \frac{\hat{\mathbf{q}}}{m_{N}} \cdot \mathcal{S} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}$$

$$O_{10} = i\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \mathbb{1}_{\chi} \qquad O_{20} = \left(\hat{\mathbf{S}}_{N} \times \frac{\hat{\mathbf{q}}}{m_{N}}\right) \cdot \mathcal{S} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}$$

Assume effective nonrelativistic DM-nucleon interactions

$$\frac{dN}{dt} = C_{cap} - C_{ann}N^2$$

Captured DM then decays to observable neutrinos

I c e C u b e

Current Analyses IV

"Search for Secluded Dark Matter with 6 years of IceCube Data" – Christoph Toennis, arXiv:2107.10778

Assume DM annihilates into a metastable mediator

IceCube

Current Analyses V

"A search for Neutrinos from Decaying Dark Matter in Galacy Clusters and Galaxies with IceCube" – Minjin Jeong, arXiv:2107.11527

Current Analyses VI

"Dark Matter Neutrino Scattering in the Galactic Center with IceCube" – Adam McMullen, arXiv:2107.11491

Assume neutrinos and DM couple -> elastic scattering

High energy neutrino flux is attenuated and observed as a deficit

TITI (c.e.C.u.b.e.

Current Analyses VI

Example plots of what you'll see here:

TITI Con he

Current Analyses VII

Example plots which you'll see here:

Conclusions

IceCube offers a rich and diverse palette of Dark Matter and BSM studies

- DM annihilation and decay has very little background in IceCube
- Neutrino telescopes offer complimentary studies to Gamma-Ray,
 Cosmic Ray, and collider experiments
- Results will only improve with exposure time as well as the IceCube upgrade and Gen-2!
- Many exciting DM searches in the pipeline!

Image: IceCube Collaboration

Bibliography

- Combined Search for neutrinos from Dark Matter Self-Annihilation in the Galactic Centre with ANTARES and IceCube Phys. Rev. D 102, 082002 (2020)
- 2. Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO. Eur. Phys. J. C 80 (2020) 819
- 3. Search for neutrinos from decaying dark matter with IceCube Eur.Phys.J. C78 (2018) no.10, 831
- 4. Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore Eur. Phys. J. C (2017) 77: 627
- 5. First search for dark matter annihilations in the Earth with the IceCube Detector Eur. Phys. J. C (2017) 77: 82
- 6. Search for Secluded Dark Matter with 6 years of IceCube Data arXiv:2107.10778
- 7. A search for Neutrinos from Decaying Dark Matter in Galacy Clusters and Galaxies with IceCube arXiv:2107.11527
- 8. Search for Dark Matter from the Center of the Earth with 8 Years of IceCube Data arXiv:2107.11244
- 9. Indirect Searches for Dark Matter in the Galactic Center with IceCube arXiv:2107.11224
- 10. Constraining Non-Standard Dark Matter-Nucleon Interactions with IceCube arXiv:2108.05203
- 11. Dark Matter Neutrino Scattering in the Galactic Center with IceCube arXiv:2107.11491
- 12. Searching for Dark Matter from the Sun with the IceCube Detector doi: 10.22323/1.395.0020