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Introduction

‣ CDM scenario:                 Structure forms through hierarchical merging of dark matter haloes


‣ Numerical predictions:       Observed structure above ~1 Mpc is well explained by CDM


                    Small scale observations challenge CDM (Bullock & Boylan-Kolchin (2017)) 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‣ Cusp-core problem


‣ Too-big-to-fail 


‣Missing satellite problem

Weinberg et al. (2013) Popolo et al. (2009)

Cored

Cusped

Introduction
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‣ CDM scenario:                 Structure forms through hierarchical merging of dark matter haloes


‣ Numerical predictions:       Observed structure above ~1 Mpc is well explained by CDM


                    Small scale observations challenge CDM (Bullock & Boylan-Kolchin (2017))


‣ Solutions:                             Baryonic physics 


                    Non-cold dark matter: Warm dark matter (sterile neutrinos, axionlike particles)

Λ

Introduction



Warm m = 2 keV

5 Lovell et al. (2014)

‣ Warm dark matter as a solution?

Cold
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‣ Need subhalo model:      Numerical simulations / Analytical model

Cold
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Warm m = 2 keVCold

Lovell et al. (2014)

‣ Warm dark matter as a solution?


‣ Probe small scales:          Abundance of Milky-Way satellites


‣ Need subhalo model:      Numerical simulations / Analytical model

Limited to numerical resolution Fast & flexible
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Analytical Model

Semi-Analytical SubHalo Inference Modeling — SASHIMI
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1. Structure forms  —  Matter Power spectrum

Warm particles 

suppress small scale 

perturbations

Thermal WDM (Viel et al. (2011))
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2. Dark matter haloes accrete

Halos are formed through gravitational collapse above δ(z) > δc

Extended Press-Schechter: Analytical expressions for the accretion history



Subhalo mass function:   
d2N

d ln m dz
= f(S, δ |S0, δ0)

dS
dm

dM̄
dz
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2. Dark matter haloes accrete

Number of subhaloes with 

( , ) at accretion within 

host M

m z

Halos are formed through gravitational collapse above δ(z) > δc

Extended Press-Schechter: Analytical expressions for the accretion history



Average mass-loss due to Tidal Stripping  (Hiroshima+ 2018, Van 
den Bosch+ 2005) 




Obtain  before and after tidal stripping 


Remove completely disrupted subhalos

dm
dt

=
m − m(rt)

Tr

(ρs, rs, rt)

Mass stripped at pericenter 
after first orbital period  

beyond 

Tr

rt

3. Subhaloes evolve in time
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1. Structure forms 2. Dark matter haloes accrete 3. Subhaloes evolve in time

SASHIMI
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1. Structure forms 2. Dark matter haloes accrete 3. Subhaloes evolve in time

4. Satellite galaxies form within

‣ All subhalos host satellites (canonical)


‣ Galaxy formation threshold (mass, circular velocity)

SASHIMI
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1. Structure forms 2. Dark matter haloes accrete 3. Subhaloes evolve in time

4. Satellite galaxies form within

‣ All subhalos host satellites (canonical)


‣ Galaxy formation threshold (mass, circular velocity)

5. Integrate to obtain total number 

of satellites in the Milky-Way

SASHIMI



16

- DES & Pan-STARRS1 observe ultra-

faint satellite galaxies with ~80% 

sky coverage.


- Correct for detectability of satellites 


- Rule out WDM models that 

produce too few satellites at 95% CL

Drlica-Wagner et al. (2020)

Observed satellites in the Milky Way

270 satellites after correction
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  All subhalos host satellite galaxies


‣ Exclude WDM mass at 95% CL 




‣ Model-independent constraints

mWDM > 3.5 − 5 keV

Warm dark matter Constraints

Dekker et al. (2021)
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Sterile Neutrino: Current constraints

‣ Produced through mixing 

 with neutrinos 

(non-thermal)


‣ Enhanced by lepton 

asymmetry  

(Shi&Fuller 1999)

sin2(2θ)

More mixing with ν

Less mixing with ν
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Sterile Neutrino Constraints

Dekker et al. (2021)

MMW = 1012 M⊙

All subhalos host satellite galaxies


 Constraints at 95% CL


Exclude sterile neutrino mass <12 keV
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Codes publicly available on Github


SASHIMI — Semi-Analytical SubHalo Inference ModelIng


https://github.com/shinichiroando/sashimi-w


https://github.com/shinichiroando/sashimi-c

https://github.com/shinichiroando/sashimi-w
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Sterile Neutrino Constraints — X-ray observations

   X-ray constraints


  Theory


‣ Sterile neutrino decay 


‣ Improve with eROSITA: 
All-sky X-ray survey (4 years)


‣ Studied diffuse emission from 
Galactic halo

νs → νa + γ
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Sterile Neutrino Constraints — X-ray observations
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Sensitivity axion-like particle

Dekker et al. (2020)
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Summary

❖ Semi-analytical model SASHIMI

❖ Codes are publicly available

❖ Rule out WDM models based on satellite counts in the Milky Way 

   ,  for 


❖ Complementary results from X-ray emission with eROSITA

mWDM > 4.4 keV mνs
> 12 keV MMW = 1012M⊙
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Summary

❖ Semi-analytical model SASHIMI

❖ Codes are publicly available

❖ Rule out WDM models based on satellite counts in the Milky Way 

   ,  for 


❖ Complementary results from X-ray emission with eROSITA

mWDM > 4.4 keV mνs
> 12 keV MMW = 1012M⊙

Thank you! 
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Back-up slides
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Tidal stripping

dm(z)
dt

= − A
m(z)
τdyn ( m

Mhost )
ζ

dm
dt

=
m − m(rt)

Tr

• Van den Bosch et al. (2005) present analytical description 

for the average mass loss rate of dark matter haloes


• Hiroshima et al. (2018) consider toy model for the 

average mass loss of a subhalo
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Tidal stripping

Hiroshima et al. (2018)

Agreement for CDM with numerical simulations


Adopt toy model to get  for WDM(A, ζ)



29

Evolved subhalo mass function

- After tidal stripping the internal structure of a subhalo changes


- Determine  at accretion for given 


- Obtain  after tidal stripping 


- Subhalos with  are completely disrupted


(ρs, rs, rt) (c, m, z)

(ρs, rs, rt)

rt < 0.77 rs

Penarrubia et al. (2010)

Evolution of  and  as a 

function of mass loss fraction

Vmax rmax



Evolved subhalo mass function

EPS

Log-normal distribution for concentration
Mass-loss

- After tidal stripping the internal structure of a subhalo changes


- Determine  at accretion for given 


- Obtain  after tidal stripping 


- Subhalos with  are completely disrupted


(ρs, rs, rt) (c, m, z)

(ρs, rs, rt)

rt < 0.77 rs
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Comparison with numerical simulation


Mhost = 1.8 × 1012M⊙

Dekker et al. (2021)
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Minimum peak mass


Dekker et al. (2021)
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Sterile neutrino (Venumadhav et al. (2015))

- Produced through mixing 

 with neutrinos 

(non-thermal)


- Lepton asymmetry 

enhances resonant 

oscillations 


(Shi & Fuller 1999)

sin2(2θ)

νe,μ,τ → νs

Matter Power Spectrum
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For each set of parameter 

scan over lepton asymmetry to get the 

correct dark matter abundance 


(sin2(2θ), mνs
)

Cherry et al. (2017)

Matter Power Spectrum
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Where to look?


Highest flux from Galactic Halo

• First all-sky X-ray mission since ROSAT


• ~25 times better sensitivity 


• Good energy/angular resolution (Predehl et al. 2021)


• Launched July 2019
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Axion-like particle dark matter

Excluded regions

Median, 68% and 95%

Applicable to any DM candidate that 

produces monochromatic X-ray line


ALP well motivated by theories 

beyond the SM


Dekker et al. (2020)
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Axion-like particle dark matter


Electron coupling

XENON1T excess explained by ALP at 

Anomaly free symmetry model 

(Takahashi et al (2020), 

ALP coupling to SM particles is already 
constrained by X-ray observations:

Photon production needs to be suppressed

Best-fit region XENON1T
Stellar cooling anomalies

Median, 68% and 95%

Dekker et al. (2020)
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X-ray count sky maps

2.5 ks eROSITA exposure

Remove Galactic plane with |b|<20 

X-ray bubbles

(Predehl et al. 2020)Decay signal from the 

Galactic halo

mνs

= 9keV, Γνs
= 10−28s−1

Isotropic components

Cosmic X-ray background (Lumb 
et al. 2002)

eROSITA’s detector

Extragalactic dark matter signal
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X-ray count sky maps

2.5 ks eROSITA exposure

Model Mock data sets

Generate mock data sets

Joint likelihood analysis  — Obtain upper limits at 95% CL


