

Solar Atmospheric Neutrinos Searches with the ANTARES Neutrino Telescope

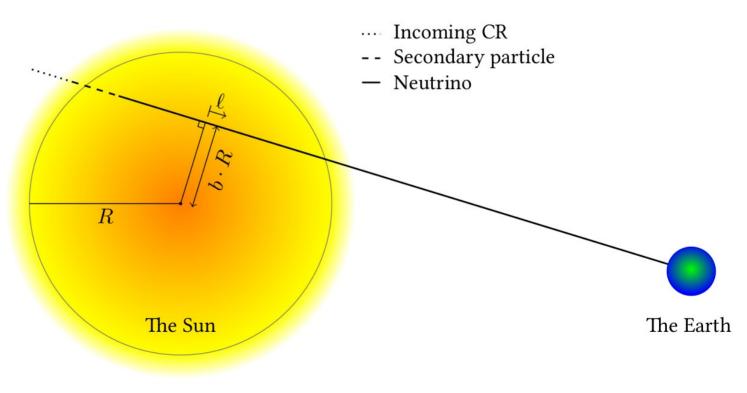
ANTARES-KM3NeT

Dark Ghost-2022

On behalf of the ANTARES collaboration D. Lopez-Coto

S. Navas

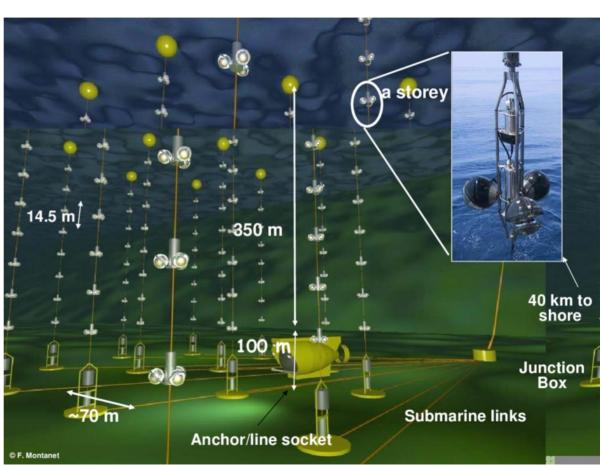
J.D. Zornoza


April 1st, 2022

Solar Atmospheric Neutrinos

ANTARES – Solar Atmospheric Neutrinos

- CRs blocked by the Sun yield v as final state particles.
- The majority of the neutrinos are absorbed in the inner part.
- v produced at the solar corona can escape and reach the Earth.
- Important for understanding the solar composition as well as the background for indirect solar DM searches.



D. Lopez-Coto, S. Navas, J.D. Zornoza

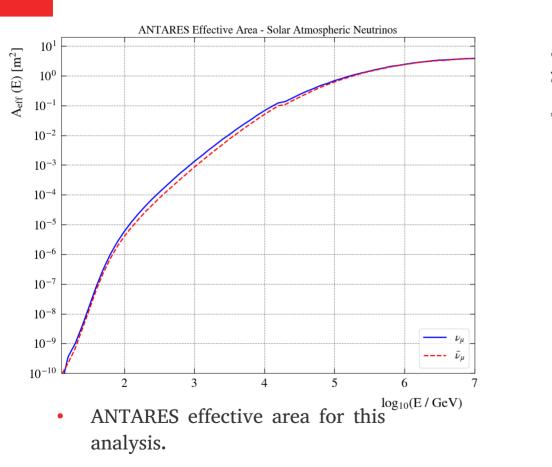
The ANTARES Detector

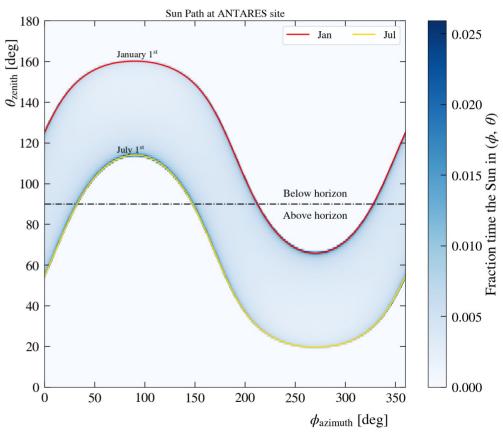
- First undersea Neutrino Telescope.
- Located in the Mediterranean Sea, near Toulon, at 2500 m depth.
- Construction 2006-2008.
- Continuously taking data.
- Switched off on February 2022.
 Dismantling forseen by summer 2022.
- 12 lines (885 PMTs)
- 25 storeys/line
- 3 PMTs/storey

The ANTARES Detector

•

10


E_v [GeV]


Median angular resolution, track channel.

2 main topologies 10 $\Delta \Psi$ Track like \rightarrow From v_µ and v_{T} CC. Shower like \rightarrow From allflavours NC and v_{a} and v_{r} CC. Angular resolution $< 0.4^{\circ}$ for $E_{v} > 10$ TeV). 10 10⁶ 10^{3} 10⁵ 10⁴

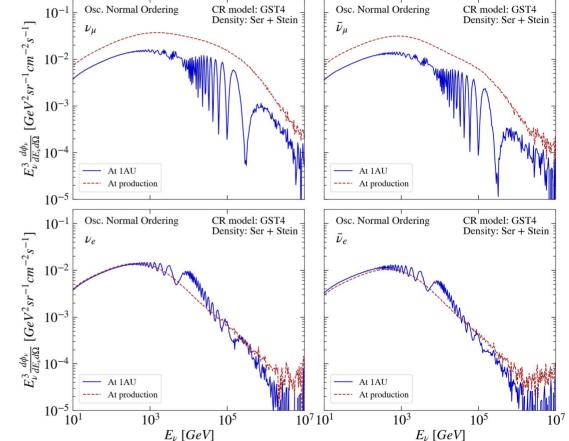
D. Lopez-Coto, S. Navas, J.D. Zornoza

The ANTARES Detector

• Sun tracking taken into account.

D. Lopez-Coto, S. Navas, J.D. Zornoza

Analysis Outlook

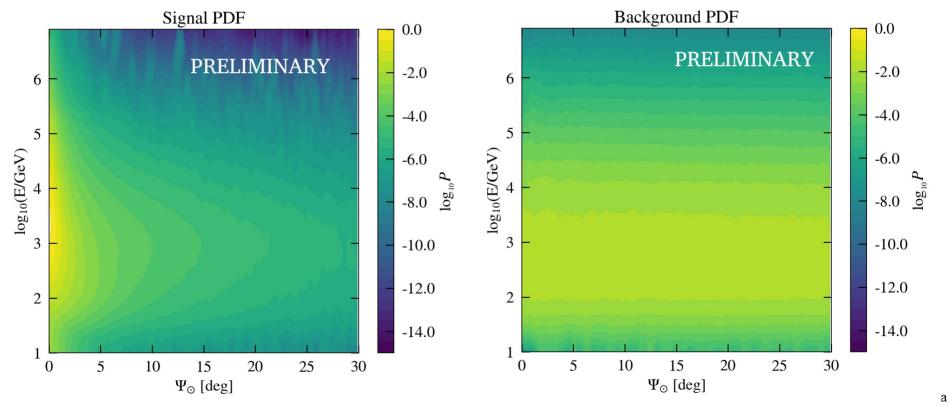

- Only track channel considered (v_{μ} CC).
- Data taking period from 2008 to 2018 (both included) \rightarrow lifetime of 3022 days.
- Main background \rightarrow Atmospheric μ and atmospheric v.
- Selection quality cuts to optimize SAv Sensitivity and reject background.
 - Λ >-5.2, reconstruction fit parameter
 - $\beta < 1^{\circ}$, error estimate in the reconstructed angle
 - $\cos\theta > 0 \rightarrow$ upward-going events.
- Unbinned likelihood search.

Analysis

- Solar Atmospheric Neutrino flux from WimpSim 5.0
 From: J. Edsjö et al JCAP06(2017)033
 - 2 Cosmic Ray (CR) models (<u>H3a</u> and GST4).
 - 2 Solar composition models. (<u>Ser+Stein</u> and <u>Ser+GS98</u>).
 - Oscillation and Normal Ordering parameters. From global-best fit: JHEP 01 (2017) 087
 - Solar Magnetic Field Effect is neglected.

 $\begin{aligned} \theta_{12} &= 33.56^{\circ} & \delta = 261^{\circ} \\ \theta_{13} &= 8.46^{\circ} & \Delta m_{21}^2 = 7.5 \cdot 10^{-5} \text{eV}^2 \\ \theta_{23} &= 41.6^{\circ} & \Delta m_{31}^2 = 2.524 \cdot 10^{-3} \text{eV}^2 \end{aligned}$

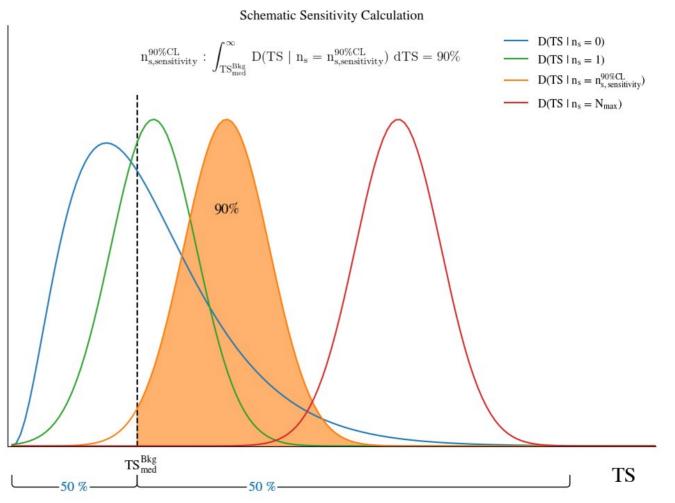
Sun as a <u>point source</u>, filled disk and ring shape.



D. Lopez-Coto, S. Navas, J.D. Zornoza

Analysis

- Unbinned Likelihood search. $\mathcal{L}(n_{\text{sig}}) = e^{-(n_{\text{sig}}+n_{\text{bkg}})} \prod_{i}^{N} \left[n_{\text{sig}} \cdot \mathcal{S}(\Psi_{\odot,i},\beta_{i},E_{i}) + n_{\text{bkg}} \cdot \mathcal{B}(\Psi_{\odot,i},\beta_{i},E_{i}) \right]$
- Signal and Background PDFs from MC weighted events and scrambled data respectively.


$$\mathcal{L}(n_{\text{sig}}) = e^{-(n_{\text{sig}} + n_{\text{bkg}})} \prod_{i}^{N} \left[n_{\text{sig}} \cdot \mathcal{S}(\Psi_{\odot,i}, \beta_i, E_i) + n_{\text{bkg}} \cdot \mathcal{B}(\Psi_{\odot,i}, \beta_i, E_i) \right]$$

• Likelihood ratio test.

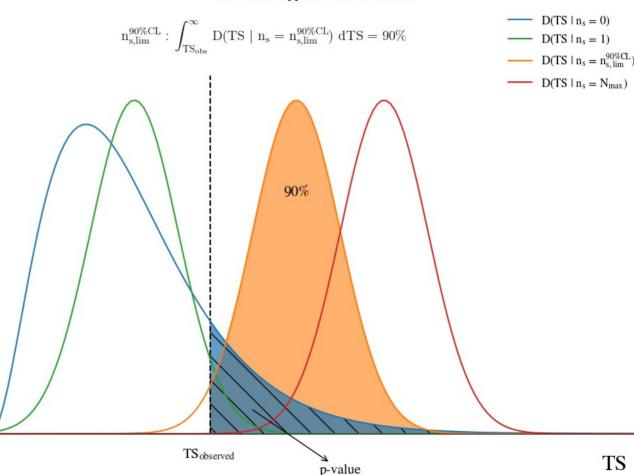
Analysis

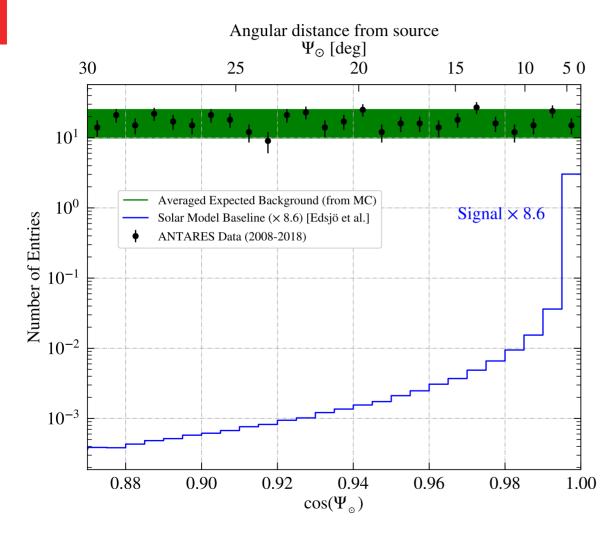
 $TS = \log_{10} \left(\frac{\mathcal{L}(\hat{n}_{sig})}{\mathcal{L}(0)} \right)$

- Natural statistical fluctuations and 15% uncertainty in the number of detected events are included.
- Sensitivity computation.
- 90% CL upper limit computation.

$$\mathcal{L}(n_{\text{sig}}) = e^{-(n_{\text{sig}} + n_{\text{bkg}})} \prod_{i}^{N} \left[n_{\text{sig}} \cdot \mathcal{S}(\Psi_{\odot,i}, \beta_i, E_i) + n_{\text{bkg}} \cdot \mathcal{B}(\Psi_{\odot,i}, \beta_i, E_i) \right]$$

Analysis


Schematic Upper-Limit Calculation


Likelihood ratio test. .

$$TS = \log_{10} \left(\frac{\mathcal{L}(\hat{n}_{sig})}{\mathcal{L}(0)} \right)$$

- Natural statistical • fluctuations and 15% uncertainty in the number of detected events are included.
- Sensitivity computation. •
- 90% CL upper limit • computation.

Results

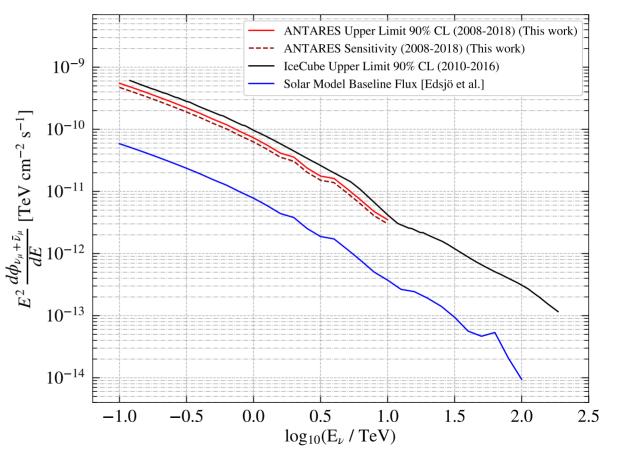
- Event distribution as a function of the angular distance around the source.
- Expected signal magnified for comparison (blue histogram).
- Expected background (green).
- Data (black points).

D. Lopez-Coto, S. Navas, J.D. Zornoza

Results

• The flux limit is computed as:

 $\frac{d\phi_{\nu_{\mu}+\bar{\nu}_{\mu}}^{90\% CL}(E)}{dE} = \frac{\bar{\mu}_{sg}^{90\% CL}}{n_{sg}^{\text{theor}}} \cdot \frac{d\phi_{\nu_{\mu}+\bar{\nu}_{\mu}}^{\text{theor}}(E)}{dE}$ Where:


$$n_{sg}^{\text{theor}} = T_{\text{live}} \int \sum_{l \in \nu_{\mu}, \bar{\nu}_{\mu}} \left(\frac{d\phi_l^{\text{theor}}(E')}{dE} A_{\text{eff}}^l(E') \right) dE'$$

 Is the expected number of signal events for the considered lifetime (3022 days).

-
$$n^{\text{theor}}_{\text{sig}}$$
= 0.36

- Unblinded results:
 - $μ_{90}$ = 3.15 → C₉₀ ≈ 8.6
 - p-value = 0.41

- Base line:
 - H3a + Ser-Stein
 - Sun as a Point Source

D. Lopez-Coto, S. Navas, J.D. Zornoza

Summary

• 11 years of ANTARES data.

• Unbinned Likelihood Method is used.

• No signal evidence is observed.

• A flux upper limit is established to be 7 x 10^{-11} [TeV⁻¹ cm⁻² s⁻¹] at 1 TeV neutrino Energy.

• Pre-print: arXiv:2201.11642