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Introduction

• Standard Model : the muon is an elementary particle

• Same charge but 200 heavier than the electron

• Spin 1/2 particle

• The magnetic moment of the muon is proportional to the spin ~µ = g
(
Qe
2m

)
~s

aµ =
g − 2

2

Why is this observable so interesting ?

1) can be measured very precisely : < 0.5 ppm !

2) can also be predicted very precisely in the SM

3) sensitive to new physics
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Introduction

I Corrections to the vertex function : Dirac and Pauli form factors

Assuming Lorentz invariance and P and T symmetries, the vertex function can be
decomposed into 2 form factors

γ(q)

µ(p′)µ(p)

= −ie u(p′,σ′)Γµ(p′, p)u(p, σ)

= −ie u(p′, σ′)

[
γµF1(q

2) +
iσµνqν

2m
F2(q

2)

]
u(p, σ)

F1(0) = 1 (charge conservation) F2(0) = aµ = g−2
2

I Classical result : g = 2 for elementary fermions (Dirac equation)

γ

µµ

Quantum field theory : aµ = g−2
2 6= 0

↪→ quantum effects

a(1)
µ =

α

2π
≈ 0.00116 [Schwinger ’48]
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Standard model contributions : QED

• QED accounts for more than 99.99% of the final result [Aoyama et al. ’12 ’19]

aQED
µ =

(
α

π

)
a

(1)
µ +

(
α

π

)2

a
(2)
µ +

(
α

π

)3

a
(3)
µ + · · ·

→ 5-loop contributions are known !

Order α4 (7 diagrams)

Order α6 (72 diagrams)

Order α8 (891 diagrams) ...

Order α10 (12 672 diagrams)

n a
(1)
µ × 1011 n a

(1)
µ × 1011

1 116 140 973.321(23) 4 381.004(17)
2 413 217.6258(70) 5 5.0783(59)
3 30 141.90233(33)

→ Uncertainty far below ∆aµ. Strong test of QED.

aQED
µ = 116 584 718.931(104)× 10−11

aSM
µ = 116 591 810(43)× 10−11
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Standard model contributions

• Electroweak corrections [Czarnecki ’02] [Gnendiger ’13]

γ

µµ
Z

WW

γ

µµ
H

γ

µµ
Z

→ Two-loop contributions are known : aEW
µ × 1011 = 153.6(1.0)

→ Contributes to only 1.5 ppm (∼ 4 × exp. error) ⇒ under control

• QCD corrections
→ Quarks and gluons do not directly couple to the muon : contribution via loop diagrams
→ The two relevant contributions (to reduce the error) are

Hadronic Vacuum Polarisation (LO-HVP, α2) Hadronic Light-by-Light scattering (HLbL, α3)

• Contribution from unknown particles / interactions ( ?) aNP
` = C m

2
`

Λ2

→ Talk tomorrow morning by Martin Hoferichter
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Other hadronic contributions

LO HVP (α2) NLO HVP (α3) NNLO HVP (α4) HLbL (α3)

• LO HVP : includes photons in the QCD blob
→ strictly speaking, not an expansion in α, but consistent !

• NLO HVP and NNLO HVP differ by the QED kernel functions

→ NLO HVP : same order as HLbL (but negative contribution)
→ Not negligible, but error under control (the required relative precision is smaller)
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Theory status just after the white-paper (2020)

The Muon g − 2 Theory Initiative :

• website : https ://muon-gm2-theory.illinois.edu/

• White Paper posted 10 June 2020

The anomalous magnetic moment of the muon in the Standard Model [Phys.Rept. 887 (2020) 1-166]

Contribution aµ × 1011

- QED (leptons, 10th order) 116 584 718.931± 0.104 [Aoyama et al. ’12 ’19]
- Electroweak 153.6± 1.0 [Gnendiger et al. ’13]
- Strong contributions

HVP (LO) 6 931± 40 [DHMZ ’19, KNT ’20]
HVP (NLO) −98.3± 0.7 [Hagiwara et al. ’11]
HVP (NNLO) 12.4± 0.1 [Kurtz et al. ”14]
HLbL 92± 18 [See WP]

Total (theory) 116 591 810± 43

→ The error budget is totally dominated by hadronic contributions !

→ Lattice calculations can play a major role there.
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Status after the first run of the E989 experiment at Fermilab

• Remarkable confirmation of the Brookhaven result (2004)

• Similar precision for both theory and experiment

• This is a large discrepancy (2× electroweak contribution !)

• Theory error is dominated by hadronic contributions
→ reduction of the theory error by a factor of 3-4 needed to match upcoming experiments
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Status after the first run of the E989 experiment at Fermilab

BUT :

• does not include the most recent lattice results
→ complete lattice calculation of the HLbL contribution by Mainz [Eur.Phys.J.C 81 (2021) 7, 651]

→ first sub-percent calculation of the HVP contribution by BMW [Nature 593 (2021) 7857]
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Outline of the talk : hadronic contributions

I Hadronic Vacuum Polarisation (HVP, α2)

• Blobs : all possible intermediate hadronic states (ππ, · · · )

• Precision physics (Goal : precision < 0.3%)

Πµν(Q) = =

∫
d4x eiQ·x 〈Vµ(x)Vν(0)〉

γγ

I Hadronic Light-by-Light scattering (HLbL, α3)

Hadronic light-by-light tensor Πµνλσ(p1, p2, p3)

• Small but contributes to the total uncertainty !

• 4-point correlation function

• More difficult, but 10% precision is enough
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Standard model prediction of hadronic contributions

I Perturbative QCD not applicable : we need non-perturbative methods

I Two first-principle approaches :

The dispersive framework (data-driven)

→ based on analyticity, unitarity ...
→ ... but relies on experimental data
→ several group have published results for the HVP [Davier et al. ’19] [Keshavarzi et al. ’20]

→ more difficult for the Light-by-Light, but a lot of progress recently
(analytic structure of the 4-point function more difficult, exp. data sometimes missing)

Lattice QCD

→ ab-initio calculations (it is not a model !)
→ need to control all sources of error (challenging at this level of precision)
→ many groups : so cross-checks are possible

I It provides two completely independent determinations
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Lattice QCD
I Rigorous calculation : specific regularization of the path integral

〈O〉 =
1

Z

∫
D[U ]

∫
D[ψ]D[ψ] O[ψ, ψ, U ] e−SE [U,ψ,ψ]

I Use an hypercubic lattice to regularize the theory :

• Lattice spacing : UV regulator

• Finite volume : IR regulator

• Different discretizations are possible
⇒ Different properties, numerical costs

• Finite number of degrees of freedom
⇒ numerical simulations

Uµ

ψ(x)

L = 3− 6 fm

a

< 0.1 fm

I Very large number of degrees of freedom ⇒ Stochastic evaluation using Monte-Carlo

→ generate n gauge configurations {U (i)
µ }) with probability weight given by the action

O =
n∑

i=1

〈O〉F [U (i)
µ ] = 〈O〉+ δO → statistical error
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Lattice QCD : sources of errors

Statistical error

I Monte-Carlo algorithm : statistical error → ∼ 1/
√
Nmeas

Systematic errors

I Finite lattice spacing : continuum extrapolation

I Finite volume
→ one should take the infinite volume limit

I Isospin-breaking and QED corrections
→ Need to be included at this level of precision

Effective field theories are helpful

I Symanzik Effective Field Theory : behavior of the continuum extrapolation

I Chiral perturbation theory : quark mass dependence, volume effects

I They are valuable guide to reach the physical point !
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Hadronic vacuum polarization

680 700 720 740 760

BMW ’20

Lehner et al. ’20

FHM ’19

Mainz ’19

PACS ’19

ETMC ’19

RBC/UKQCD ’18

R-ratio

a
hvp
µ

× 10
10

→ Many lattice collaborations (with different systematic errors)
→ Precision of about 2% for lattice, 0.6% for the data driven approach
→ Recent lattice calculation below 1% by the Budapest-Marseille-Wuppertal collaboration
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Lattice QCD approach to the hadronic vacuum polarization (HVP)

Πµν(Q) = =
(
QµQν − δµνQ2

)
Π(Q2) =

∫
d4x eiQ·x 〈Vµ(x)Vν(0)〉

γγ

EM current : Vµ(x) = 2
3u(x)γµu(x)− 1

3d(x)γµd(x)− 1
3s(x)γµs(x)+ 2

3c(x)γµc(x)+ · · ·

I Integral representation over Euclidean momenta (→ accessible from lattice !)

aHVP
µ = 4α2

∫ ∞

0

dQ2 f(Q2)
(
Π(Q2)− Π(0)

)

I Time-momentum representation [Blum ’02] [Bernecker, Meyer ’11]

aHVP
µ =

(
α

π

)2
∫ ∞

0

dx0 K(x0) G(x0) , G(x0) = −1

3

3∑

k=1

∑

~x

〈Vk(x)Vk(0)〉

I Start with iso-symmetric QCD without QED : two sets of Wick contractions

Connected contribution (quark) disconnected contribution

O(1− 2%)
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Challenges for sub-percent precision

I Noise problem (light-quark contribution)

0

0.004

0.008

0.012

0.016

0 0.5 1 1.5 2 2.5 3 3.5
t [fm]

Gconn(t)K̃(t)/mµ

Light
Strange (×6)
Charm (×6)

I QED / strong isospin breaking corrections

mu 6= md : O(mu−md

ΛQCD
) ≈ 1/100

Qu 6= Qd : O(αem) ≈ 1/100

I Continuum extrapolation [BMW ’20]

I Finite-volume effects O(3%)

Uµ

ψ(x)

L = 3− 6 fm

a

< 0.1 fm
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Solution to the noise problem

Signal / noise problem
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Solution to the noise problem
The vector correlators admits a spectral decomposition :

〈V (x0)V (0)〉 =
∑

n

〈0|V |n〉 1

2En
〈n|V (0)|0〉 e−Enx0

• |n〉 are the eigenstates in finite volume

• En and 〈0|V |n〉 can be computed on the lattice using sophisticated spectroscopy methods
[Mainz and RBC/UKQCD Collaborations]

0

0.004

0.008

0.012

0.016

0 0.5 1 1.5 2 2.5 3

xcut
0

xcut
0

x0 [fm]

G(x0)K̃(x0)/mµ

1 exp fit
loc-loc

n=4
n=3
n=2
n=1

[A. Gerardin et al, Phys.Rev. D100 (2019), 014510] [Plot by A. Meyer (RBC/UKQCD) @ Lattice 2019]

→ Only a few number of states are needed (but more states needed at the physical pion mass)

→ Noise now grows linearly with x0 (not exponentially)

→ Can be combined with powerful algorithmic improvements.
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Corrections for finite-size effects

Finite volume effects
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Corrections for finite-size effects

I Direct lattice calculation [Budapest-Marseille-Wuppertal ’21]

→ Finite size effects correction : about 3% with L = 6 fm
→ Very expensive calculation : volume effects are most important at large distances

I Effective field theories can also be used
→ analytical results

→ better understanding of the volume dependance
→ NNLO-ChiPT : [C. Aubin et al, arXiv :1905.09307], [J. Bijnens et al, JHEP 1712 (2017) 114]

→ Correction based on the time-like pion form factor [H. Meyer, Phys.Rev.Lett. 107 (2011)]

→ Hamiltonian approach in [M. Hansen, A. Patella, arXiv :1904.10010]

→ In very good agreement with the direct lattice calculation
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Isospin-breaking corrections

QED + strong isospin-breaking effects
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Isospin-breaking corrections

• Lattice simulations are usually performed with QCD only and assuming mu = md

mu 6= md : O(mu−md

ΛQCD
) ≈ 1/100

Qu 6= Qd : O(αem) ≈ 1/100

Strong isospin breaking

Electromagnetic isospin breaking

I Corrections to the connected part : I Corrections to the disconnected part :

I Challenging : beyond the electro-quenched approximation (diagrams are 1/Nc suppressed)

I BMW ’21 : first calculation that includes all diagrams. About 1% of the full contribution.
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Summary : current status for the lattice HVP calculations

680 700 720 740 760

BMW ’20

Lehner et al. ’20

FHM ’19

Mainz ’19

PACS ’19

ETMC ’19

RBC/UKQCD ’18

R-ratio

a
hvp
µ

× 10
10

I First sub-percent lattice calculation by BMWc (competitive with the data-driven approach)

I If confirmed, would reduce the discrepancy with experiment to < 2σ

I Need confirmation by other lattice groups

I Ultimate Goal : 0.2%

• average between lattice and dispersive might help ...
• ... but only if they agree
• it is probably too soon to quote a "SM estimate of the LO-HVP" with < 0.5% precision
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What could go wrong on the lattice ?

• Is the continuum extrapolation under control ?

→ Based on Symanzik Effective Field Theory : one expects a2 scaling ...

→ ... up to logarithms a2/ log(a)Γ !

→ For pure Yang-Mills one has Γ > 0. Might also be true for QCD [Husung et al ’19]

→ Often logarithms are neglected (2 reasons : Γ are not known + lack of data)

[BMW collaboration] [Mainz group]
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What could go wrong on the lattice ?

I What can be done ?

• comparison between different collaborations :
- different discretization of the action (Wilson, Domain Wall, staggered)
- with different approach to the continuum limit.

• it is extremely important to have many (small !) lattice spacings
- Are we in the scaling regime ? Are logarithms under control ?

I Time momentum representation (TMR)

aHVP
µ =

(α
π

)2
∫ ∞

0
dx0 K(x0) G(x0) , G(x0) = −1

3

3∑

k=1

∑

~x

〈Vk(x)Vk(0)〉

• most collaborations use the TMR method (time in treated differently)
• in principle it is perfectly fine, but we might miss a sytematic error
• different approaches have been proposed [Meyer ’18], not yet used in practice

I Cross check using a second observable :

• based on the same lattice data (vector correlator)
• easier to calculate
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Window observables and cross-checks

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

t [fm]

Lattice data awin
µ =

(α
π

)2∑

t

G(t)K(t)W (t; t0, t1)

→ Short distances (SD)
→ Intermediate distances (ID)
→ Long distances (LD)

I By construction, the sum over the 3 windows gives the full contribution

aLO−HVP
µ = awin,SD

µ + awin,ID
µ + awin,LD

µ

I Each window observakbe is subject to very different systematic errors

Short-distance Intermediate-distance Long-distance
stat. precise stat. precise noise problem
discretization effects small finite volume effect finite volume corrections

large taste breaking (staggered)
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Cross-checks : window quantities

I workshop organized in November 2020 to discuss those issues
[https ://indico.cern.ch/event/956699/]

200 204 208

R-ratio
RBC/UKQCD ’18
Aubin et al. ’19
BMW ’20
Lehner et al. ’20
Mainz ’20 (prelim)
FHM ’20 (prelim)
ETM ’20 (prelim)

(
ahvpµ

)win,l × 1010

I lattice results systematically above the R-ratio
I agreement between lattice calculations not yet satisfactory : need to be improved !
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Hadronic light-by-light scattering contribution

aHLbL
µ = ≈

π0 , η , η′
+

π+

+ . . .

Dispersive framework (’21) aµ × 1011

π0, η, η′ 93.8± 4

pion/kaon loops −16.4± 0.2

S-wave ππ −8± 1

axial vector 6± 6

scalar + tensor −1± 3

q-loops / short. dist. cstr 15± 10

charm + heavy q 3± 1

total HLbL 92± 19

LO HVP 6931± 40

I results from [Phys. Rept. 887 (2020) 1-166]

I Enters at O(α3)

I ∆aexp
µ = 28× 10−10 ≈ 3× ahlbl

µ
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Direct lattice calculation of the Hadronic light-by-light contribution

• Two collaborations : RBC/UKQCD and Mainz, both using position space approaches

• Mainz approach : position-space [Eur.Phys.J.C 81 (2021) ] [Eur.Phys.J.C 80 (2020)3]

z

0x y

aHLbL
µ =

me6

3

∫
d4y

∫
d4x L[ρ,σ];µνλ(x, y) iΠ̂ρ,µνλσ(x, y)

iΠ̂ρ,µνλσ(x, y) = −
∫

d4z zρ 〈Jµ(x)Jν(y)Jσ(z)Jλ(0)〉

→ L[ρ,σ];µνλ(x, y) is the QED kernel, computed semi-analytically in infinite volume

→ Avoid 1/L2 finite-volume effects from the massless photons ⇒ ∼ e−mπL

• RBC/UKQCD : [T. Blum et al, Phys.Rev. D93 (2016)] [arXiv :1911.08123]

→ Similar strategy

→ QEDL : photon in finite volume ⇒ power-law volume corrections
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Wick contractions : 5 classes of diagrams

• Fully connected contribution

0y

x

z

• Leading 2+2 (quark) disconnected contribution

0y

z

x

• Sub-dominant disconnected contributions (3+1, 2+1+1, 1+1+1+1)

0y

z

x
0y

z

x 0 y

z

x

• Second set of diagrams vanish in the SU(3) limit (at least one quark loop which couple to a single photon)

→ Smaller contributions, have been shown to be irrelevant at the 10% level [Mainz ’21 : 2104.02632]

• 2+2 disconnected diagrams are not negligible !

→ Large-Nc prediction : 2+2 disc ≈ - 50 % × connected [Bijnens ’16]

→ Cancellation ⇒ more difficult (correlations does not seems to help in practice ...)
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Large cancellation between the two leading contributions

• Connected and disconnected contributions from Mainz (mπ = 200 MeV)
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• Connected and disconnected contribution from RBC/UKQCD at the physical pion mass
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• signal/noise problem even more difficult than HVP
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Which errors are relevant
Mainz group [2104.02632]
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• Statistical noise at long distances

• Finite-volume effects are large

• Continuum extrapolation

→ Chiral extrapolation milder than expected (based on π0-pole contribution)

→ Isospin-breaking corrections are not relevant here

• Both long-range contribution and finite-volume effects are well describe by π0-exchange :

≈ + + + · · ·π0, η, η′

→ the key ingredient is the pion transition form factor Fπ0γγ(Q
2
1, Q

2
2)
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Lattice inputs for the dispersive framework : the pion-pole contribution

≈ + + + · · ·π0, η, η′

• Pion transition form factor
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• Fully model independant

aHLbL;π0

µ = (59.9±3.6)×10−11

[A. G et al, Phys.Rev. D100 (2019)]

→ Compatible with the dispersive result

aHLbL;π0

µ = 62.6+3.0
−2.5 × 10−11

[Hoferichter et al. ’18]

• The BMW and ETM collaborations have presented preliminary results for the η and η′
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Conclusion HLbL : Summary of lattice results

I First lattice QCD results are now published
→ In good agreement with the dispersive framework
→ But systematic errors are sizeable, cross-checks would be welcome

I Lattice can also provide valuable inputs to the dispersive framework

→ pseudoscalar-pole contribution (π0, η, η′)

I Close, but not yet at the target precision (< 10%)
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Conclusion

I First run ≈ 1/20 of the expected total statistics
→ are we close to NP discovery ?
→ non-perturbative hadronic contributions dominate the error
→ the recent BMW lattice result reduces the tension with the measurement !
→ ... but there is now a tension with the dispersive framework : need confirmation !

I Rapid progress on the lattice
→ first sub-percent lattice calculation by BMW, but in tension with R-ratio estimates
→ first complete calculation by Mainz : confirm the size of the HLbL contribution
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Hadronic vacuum polarization : dispersive framework

• Use analyticity + optical theorem

Rhad(s) =
σ0(e+e− → γ∗ → hadrons)

(4πα2/3s)

• K̂(s) is a known kernel function

aHVP
µ =

(αmµ

3π

)2
{∫ E2

cut

m2
π

ds
Rdata

had (s)K̂(s)

s2
+

∫ ∞

E2
cut

ds
RpQCD

had (s)K̂(s)

s2

}

• Compilation of experimental data from many experiments
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Hadronic vacuum polarization and dispersive theory

• Subject to experimental uncertainties : careful propagation of experimental uncertainties

→ Groups with 6= methodologies are in good agreement [Davier et al. ’19] [Keshavarzi et al. ’20]

→ But local discrepancies (tensions already there in the experimental data) !

→ Problematic for the dominant ππ channel
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Difference between BABAR and KLOE : ∆aµ = 9.8(3.4)× 10−10

Difference pheno / exp for the g − 2 : ∆aµ = 28(8)× 10−10

• White paper average for the dispersive approach

ahvp
µ = 693.1(2.8)stat(0.7)DV+QCD(2.8)KLOE/BABAR × 10−10 [0.58%]
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