Muon $g - 2$ from lattice QCD

Antoine Gérardin

Lake Louise Winter Institute

Tuesday 22, 2022

Officers

[I](#page-2-0)[n](#page-3-0)[t](#page-5-0)[r](#page-6-0)[o](#page-9-0)[d](#page-10-0)[u](#page-12-0)ction

- Standard Model : the muon is an elementary particle
- Same charge but 200 heavier than the electron
- Spin $1/2$ particle
- The magnetic moment of the muon is proportional to the spin $\int Qe$ 2m $\overline{\frac{1}{s}}$

$$
a_{\mu} = \frac{g-2}{2}
$$

Why is this observable so interesting?

- 1) can be measured very precisely : < 0.5 ppm!
- 2) can also be predicted very precisely in the SM
- 3) sensitive to new physics

[I](#page-2-0)[n](#page-3-0)[t](#page-5-0)[r](#page-6-0)[o](#page-9-0)[d](#page-10-0)[u](#page-12-0)ction

\triangleright Corrections to the vertex function : Dirac and Pauli form factors

Assuming Lorentz invariance and P and T symmetries, the vertex function can be decomposed into 2 form factors

$$
\sum_{\mu(p)}^{\gamma(q)} = -ie \, \overline{u}(p', \sigma') \Gamma_{\mu}(p', p) u(p, \sigma)
$$
\n
$$
= -ie \, \overline{u}(p', \sigma') \left[\gamma_{\mu} F_1(q^2) + \frac{i \sigma_{\mu \nu} q_{\nu}}{2m} F_2(q^2) \right] u(p, \sigma)
$$
\n
$$
F_1(0) = 1 \text{ (charge conservation)} \qquad F_2(0) = a_{\mu} = \frac{g-2}{2}
$$

 \triangleright Classical result : $q = 2$ for elementary fermions (Dirac equation)

Quantum field theory :
$$
a_{\mu} = \frac{g-2}{2} \neq 0
$$

\n \rightarrow quantum effects
\n $a_{\mu}^{(1)} = \frac{\alpha}{2\pi} \approx 0.00116$ [Schwinger '48]

2

[S](#page-3-0)[t](#page-4-0)[a](#page-6-0)[n](#page-7-0)[d](#page-10-0)[ar](#page-12-0)d model contribution[s](#page-13-0) [:](#page-16-0)[Q](#page-19-0)[E](#page-21-0)[D](#page-23-0)

• QED accounts for more than 99.99% of the final result [Aoyama et al. '12 '19]

$$
a_{\mu}^{\text{QED}} = \left(\frac{\alpha}{\pi}\right) a_{\mu}^{(1)} + \left(\frac{\alpha}{\pi}\right)^2 a_{\mu}^{(2)} + \left(\frac{\alpha}{\pi}\right)^3 a_{\mu}^{(3)} + \cdots
$$

 \rightarrow 5-loop contributions are known !

Order α^6 (72 diagrams)

Order α^8 (891 diagrams) ...

Order α^{10} (12 672 diagrams)

 \rightarrow Uncertainty far below Δa_{μ} . Strong test of QED.

$$
a_\mu^{\rm QED} = 116~584~718.931(104) \times 10^{-11} \label{eq:mu2}
$$

$$
a_\mu^{\rm SM} = 116~591~810(43) \times 10^{-11}
$$

[S](#page-3-0)[t](#page-4-0)[a](#page-6-0)[n](#page-7-0)[d](#page-10-0)[ar](#page-12-0)d model contribution[s](#page-13-0)

• Electroweak corrections [Czarnecki '02] [Gnendiger '13]

- \rightarrow Two-loop contributions are known : $a_\mu^{\rm EW} \times 10^{11} = 153.6(1.0)$
- \rightarrow Contributes to only 1.5 ppm (\sim 4 \times exp. error) \Rightarrow under control

• QCD corrections

- \rightarrow Quarks and gluons do not directly couple to the muon : contribution via loop diagrams
- \rightarrow The two relevant contributions (to reduce the error) are

Hadronic Vacuum Polarisation (LO-HVP, α^2

) – Hadronic Light-by-Light scattering (HLbL, $\alpha^3)$

• Contribution from unknown particles / interactions $(?)$ a

$$
i_{\ell}^{\rm NP} = {\cal C} \, \tfrac{m_\ell^2}{\Lambda^2}
$$

 \rightarrow Talk tomorrow morning by Martin Hoferichter

[O](#page-3-0)[t](#page-5-0)[h](#page-6-0)[e](#page-9-0)[r](#page-10-0) [h](#page-12-0)adronic contributions

- LO HVP : includes photons in the QCD blob \rightarrow strictly speaking, not an expansion in α , but consistent!
- NLO HVP and NNLO HVP differ by the QED kernel functions
	- \rightarrow NLO HVP : same order as HLbL (but negative contribution)
	- \rightarrow Not negligible, but error under control (the required relative precision is smaller)

[T](#page-3-0)[h](#page-5-0)[e](#page-6-0)[o](#page-9-0)[r](#page-10-0)[y](#page-12-0) status just after the [w](#page-13-0)[h](#page-16-0)[i](#page-17-0)[t](#page-18-0)[e](#page-19-0)[-](#page-21-0)[p](#page-22-0)[a](#page-25-0)[p](#page-27-0)[e](#page-28-0)r (2020)

The Muon $g - 2$ Theory Initiative :

- website : https ://muon-gm2-theory.illinois.edu/
- White Paper posted 10 June 2020

The anomalous magnetic moment of the muon in the Standard Model [Phys.Rept. 887 (2020) 1-166]

 \rightarrow The error budget is totally dominated by hadronic contributions !

 \rightarrow Lattice calculations can play a major role there.

[S](#page-3-0)[t](#page-4-0)[a](#page-6-0)[t](#page-8-0)[u](#page-10-0)[s](#page-11-0) after the first run of t[h](#page-13-0)[e](#page-16-0)[E](#page-19-0)[9](#page-21-0)[8](#page-22-0)[9](#page-25-0)[e](#page-28-0)xperiment at Fermilab

- Remarkable confirmation of the Brookhaven result (2004)
- Similar precision for both theory and experiment
- This is a large discrepancy $(2 \times$ electroweak contribution!)
- Theory error is dominated by hadronic contributions
	- \rightarrow reduction of the theory error by a factor of 3-4 needed to match upcoming experiments

[S](#page-3-0)[t](#page-7-0)[a](#page-6-0)t[u](#page-10-0)[s](#page-11-0) after t[h](#page-13-0)[e](#page-28-0)first run of the [E](#page-19-0)[9](#page-25-0)[8](#page-22-0)9 experiment at Fermilab

BUT :

- does not include the most recent lattice results
	- \rightarrow complete lattice calculation of the HLbL contribution by Mainz [Eur. Phys.J.C 81 (2021) 7, 651]
	- \rightarrow first sub-percent calculation of the HVP contribution by BMW [Nature 593 (2021) 7857]

[O](#page-3-0)[u](#page-5-0)[t](#page-7-0)[li](#page-9-0)[n](#page-11-0)[e](#page-12-0) of the talk : hadroni[c](#page-13-0)[c](#page-16-0)[o](#page-17-0)[n](#page-19-0)[t](#page-21-0)[r](#page-22-0)[i](#page-23-0)[b](#page-25-0)[u](#page-27-0)[t](#page-28-0)ions

 \blacktriangleright Hadronic Vacuum Polarisation (HVP, α^2)

- Blobs : all possible intermediate hadronic states $(\pi \pi, \cdots)$
- Precision physics (Goal : precision $< 0.3\%$)

$$
\Pi_{\mu\nu}(Q) = \n\sim \n\sim \n\sim \n\sim \n\sim \n\int d^4x \, e^{iQ \cdot x} \, \langle V_\mu(x) V_\nu(0) \rangle
$$

 \blacktriangleright Hadronic Light-by-Light scattering (HLbL, α^3)

Hadronic light-by-light tensor $\Pi_{\mu\nu\lambda\sigma}(p_1, p_2, p_3)$

- Small but contributes to the total uncertainty !
- 4-point correlation function
- More difficult, but 10% precision is enough

[S](#page-3-0)[t](#page-4-0)[a](#page-6-0)[n](#page-7-0)[d](#page-10-0)[ar](#page-12-0)d model prediction o[f](#page-13-0)[h](#page-16-0)[a](#page-17-0)[d](#page-19-0)[r](#page-21-0)[o](#page-22-0)[n](#page-25-0)[i](#page-26-0)[c](#page-27-0) contributions

- \triangleright Perturbative QCD not applicable : we need non-perturbative methods
- \blacktriangleright Two first-principle approaches :

The dispersive framework (data-driven)

- \rightarrow based on analyticity, unitarity ...
- \rightarrow ... but relies on experimental data
- \rightarrow several group have published results for the HVP [Davier et al. '19] [Keshavarzi et al. '20]
- \rightarrow more difficult for the Light-by-Light, but a lot of progress recently
	- (analytic structure of the 4-point function more difficult, exp. data sometimes missing)

Lattice QCD

- \rightarrow ab-initio calculations (it is not a model!)
- \rightarrow need to control all sources of error (challenging at this level of precision)
- \rightarrow many groups : so cross-checks are possible
- \blacktriangleright It provides two completely independent determinations

[L](#page-3-0)[a](#page-4-0)[t](#page-6-0)[t](#page-7-0)[i](#page-9-0)[c](#page-10-0)[e](#page-12-0) QCD

 \triangleright Rigorous calculation : specific regularization of the path integral

$$
\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \int \mathcal{D}[\overline{\psi}] \, \mathcal{D}[\psi] \, \, \mathcal{O}[\overline{\psi}, \psi, U] \, \, e^{-S_E[U, \overline{\psi}, \psi]}
$$

- \triangleright Use an hypercubic lattice to regularize the theory :
	- Lattice spacing : UV regulator
	- Finite volume : IR regulator
	- Different discretizations are possible \Rightarrow Different properties, numerical costs
	- Finite number of degrees of freedom \Rightarrow numerical simulations

 \triangleright Very large number of degrees of freedom \Rightarrow Stochastic evaluation using Monte-Carlo \rightarrow generate n gauge configurations $\{U_{\mu}^{(i)}\}$ with probability weight given by the action

$$
\overline{\mathcal{O}} = \sum_{i=1}^n \left\langle \mathcal{O} \right\rangle_F [U^{(i)}_\mu] = \left\langle \mathcal{O} \right\rangle + \delta \mathcal{O} \ \to \ \text{statistical error}
$$

[L](#page-3-0)[a](#page-4-0)[t](#page-6-0)[t](#page-7-0)[i](#page-9-0)[c](#page-10-0)[e](#page-12-0) QCD : sources of err[o](#page-13-0)[r](#page-14-0)[s](#page-16-0)

Statistical error

▶ Monte-Carlo algorithm : statistical error $\rightarrow \, \sim 1/\sqrt{N_{\rm meas}}$

Systematic errors

- Finite lattice spacing : continuum extrapolation
- **Finite volume** \rightarrow one should take the infinite volume limit
- \triangleright Isospin-breaking and QED corrections \rightarrow Need to be included at this level of precision

Effective field theories are helpful

- \triangleright Symanzik Effective Field Theory : behavior of the continuum extrapolation
- Chiral perturbation theory : quark mass dependence, volume effects
- \blacktriangleright They are valuable guide to reach the physical point!

Hadronic vacuum polarization

 $a_{\mu}^{\rm hvp} \times 10^{10}$

- \rightarrow Many lattice collaborations (with different systematic errors)
- \rightarrow Precision of about 2% for lattice, 0.6% for the data driven approach
- \rightarrow Recent lattice calculation below 1% by the Budapest-Marseille-Wuppertal collaboration

[L](#page-3-0)[a](#page-4-0)[t](#page-6-0)[t](#page-7-0)[i](#page-9-0)[c](#page-10-0)[e](#page-12-0) QCD approach to th[e](#page-13-0)[h](#page-16-0)[a](#page-18-0)[d](#page-19-0)[r](#page-21-0)[o](#page-22-0)[n](#page-25-0)[i](#page-26-0)[c](#page-28-0) vacuum polarization (HVP)

$$
\Pi_{\mu\nu}(Q) = \sum_{\gamma} \sum_{\gamma} \Phi(\mathcal{Q}_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2) \Pi(Q^2) = \int d^4x \, e^{iQ \cdot x} \, \langle V_{\mu}(x) V_{\nu}(0) \rangle
$$

EM current : $V_\mu(x) = \frac{2}{3}\overline{u}(x)\gamma_\mu u(x) - \frac{1}{3}\overline{d}(x)\gamma_\mu d(x) - \frac{1}{3}\overline{s}(x)\gamma_\mu s(x) + \frac{2}{3}\overline{c}(x)\gamma_\mu c(x) + \cdots$

Integral representation over Euclidean momenta (\rightarrow accessible from lattice!)

$$
a_{\mu}^{\text{HVP}} = 4\alpha^2 \int_0^{\infty} dQ^2 f(Q^2) \left(\Pi(Q^2) - \Pi(0) \right)
$$

 \triangleright Time-momentum representation [Blum '02] [Bernecker, Meyer '11]

$$
a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 \ K(x_0) \ G(x_0) \ , \qquad G(x_0) = -\frac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \ \langle V_k(x) V_k(0) \rangle
$$

 \triangleright Start with iso-symmetric QCD without QED : two sets of Wick contractions

 $O(1-2\%)$

Antoine Gérardin 13 Muon g − 2 [from lattice QCD](#page-0-0)

[L](#page-3-0)[a](#page-4-0)[t](#page-6-0)[t](#page-7-0)[i](#page-9-0)[c](#page-10-0)[e](#page-12-0) QCD approach to th[e](#page-13-0)[h](#page-16-0)[a](#page-18-0)[d](#page-19-0)[r](#page-21-0)[o](#page-22-0)[n](#page-25-0)[i](#page-26-0)[c](#page-28-0) vacuum polarization (HVP)

$$
\Pi_{\mu\nu}(Q) = \sum_{\gamma} \sum_{\gamma} \Phi(\mathcal{Q}_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2) \Pi(Q^2) = \int d^4x \, e^{iQ \cdot x} \, \langle V_{\mu}(x) V_{\nu}(0) \rangle
$$

EM current : $V_\mu(x) = \frac{2}{3}\overline{u}(x)\gamma_\mu u(x) - \frac{1}{3}\overline{d}(x)\gamma_\mu d(x) - \frac{1}{3}\overline{s}(x)\gamma_\mu s(x) + \frac{2}{3}\overline{c}(x)\gamma_\mu c(x) + \cdots$

Integral representation over Euclidean momenta (\rightarrow accessible from lattice!)

$$
a_{\mu}^{\text{HVP}} = 4\alpha^2 \int_0^{\infty} dQ^2 f(Q^2) \left(\Pi(Q^2) - \Pi(0) \right)
$$

 \triangleright Time-momentum representation [Blum '02] [Bernecker, Meyer '11]

$$
a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 \ K(x_0) \ G(x_0) \ , \qquad G(x_0) = -\frac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \ \langle V_k(x) V_k(0) \rangle
$$

 \triangleright Start with iso-symmetric QCD without QED : two sets of Wick contractions

Connected contribution (quark) disconnected contribution

Antoine Gérardin 13 Muon g − 2 [from lattice QCD](#page-0-0)

[C](#page-3-0)[h](#page-5-0)[a](#page-6-0)[ll](#page-9-0)[e](#page-11-0)[n](#page-12-0)ges for sub-percent p[r](#page-13-0)[e](#page-14-0)[c](#page-16-0)[i](#page-17-0)[s](#page-18-0)[i](#page-19-0)[o](#page-21-0)[n](#page-22-0)

▶ Noise problem (light-quark contribution)

▶ QED / strong isospin breaking corrections

\triangleright Continuum extrapolation [BMW '20]

 \blacktriangleright Finite-volume effects $O(3\%)$

[S](#page-3-0)[o](#page-4-0)[l](#page-6-0)[u](#page-7-0)[t](#page-9-0)[i](#page-10-0)[on](#page-12-0) to the noise proble[m](#page-13-0)

Signal / noise problem

[S](#page-3-0)[o](#page-4-0)[l](#page-6-0)[u](#page-7-0)[t](#page-9-0)[i](#page-10-0)[on](#page-12-0) to the noise proble[m](#page-13-0)

The vector correlators admits a spectral decomposition :

$$
\langle V(x_0)V(0)\rangle = \sum_n \langle 0|V|n\rangle \frac{1}{2E_n} \langle n|V(0)|0\rangle e^{-E_n x_0}
$$

- $|n\rangle$ are the eigenstates in finite volume
- E_n and $\langle 0 | V | n \rangle$ can be computed on the lattice using sophisticated spectroscopy methods

[A. Gerardin et al, Phys.Rev. D100 (2019), 014510] [Plot by A. Meyer (RBC/UKQCD) @ Lattice 2019]

- \rightarrow Only a few number of states are needed (but more states needed at the physical pion mass)
- \rightarrow Noise now grows linearly with x_0 (not exponentially)
- \rightarrow Can be combined with powerful algorithmic improvements.
Antoine Gérardin 16

[Mainz and RBC/UKQCD Collaborations]

[C](#page-3-0)[o](#page-5-0)[r](#page-6-0)[r](#page-7-0)[e](#page-10-0)[c](#page-11-0)[t](#page-12-0)ions for finite-size eff[e](#page-13-0)[c](#page-14-0)[t](#page-16-0)[s](#page-17-0)

Finite volume effects

[C](#page-3-0)[o](#page-5-0)[r](#page-6-0)[r](#page-7-0)[e](#page-10-0)[c](#page-11-0)[t](#page-12-0)ions for finite-size eff[e](#page-13-0)[c](#page-14-0)[t](#page-16-0)[s](#page-17-0)

▶ Direct lattice calculation [Budapest-Marseille-Wuppertal '21]

$$
L_{\text{big}} = 10.752 \, \text{fm}
$$

- \rightarrow Finite size effects correction : about 3% with $L = 6$ fm
- \rightarrow Very expensive calculation : volume effects are most important at large distances
- \blacktriangleright Effective field theories can also be used
	- \rightarrow analytical results
	- \rightarrow better understanding of the volume dependance
		- \rightarrow NNLO-ChiPT : [C. Aubin et al, arXiv :1905.09307], [J. Bijnens et al, JHEP 1712 (2017) 114]
		- \rightarrow Correction based on the time-like pion form factor [H. Meyer, Phys.Rev.Lett. 107 (2011)]
		- \rightarrow Hamiltonian approach in [M. Hansen, A. Patella, arXiv :1904.10010]
	- \rightarrow In very good agreement with the direct lattice calculation

[I](#page-2-0)[s](#page-3-0)[o](#page-5-0)[s](#page-6-0)[p](#page-9-0)[i](#page-10-0)[n](#page-11-0)[-](#page-12-0)breaking corrections

QED + strong isospin-breaking effects

[I](#page-2-0)[s](#page-3-0)[o](#page-5-0)[s](#page-6-0)[p](#page-9-0)[i](#page-10-0)[n](#page-11-0)[-](#page-12-0)breaking corrections

• Lattice simulations are usually performed with QCD only and assuming $m_u = m_d$

$$
m_u \neq m_d : \mathsf{O}(\tfrac{m_u - m_d}{\Lambda_{\text{QCD}}}) \approx 1/100
$$

 $Q_u \neq Q_d : \mathcal{O}(\alpha_{\rm em}) \approx 1/100$

Strong isospin breaking

Electromagnetic isospin breaking

 \triangleright Corrections to the connected part : \triangleright Corrections to the disconnected part :

 \blacktriangleright Challenging : beyond the electro-quenched approximation (diagrams are $1/N_c$ suppressed)

 \triangleright BMW '21 : first calculation that includes all diagrams. About 1% of the full contribution.

[S](#page-3-0)[u](#page-4-0)[m](#page-6-0)[m](#page-10-0)[a](#page-12-0)ry : current status fo[r](#page-13-0) [t](#page-14-0)[h](#page-17-0)[e](#page-18-0)[l](#page-21-0)[a](#page-22-0)[t](#page-24-0)[t](#page-26-0)[i](#page-27-0)[c](#page-28-0)e HVP calculations

First sub-percent lattice calculation by BMWc (competitive with the data-driven approach)

- If confirmed, would reduce the discrepancy with experiment to $< 2\sigma$
- \triangleright Need confirmation by other lattice groups
- \blacktriangleright Ultimate Goal : 0.2%
	- average between lattice and dispersive might help ...
	- ... but only if they agree
	- it is probably too soon to quote a "SM estimate of the LO-HVP" with $< 0.5\%$ precision

[S](#page-3-0)[u](#page-4-0)[m](#page-6-0)[m](#page-10-0)[a](#page-12-0)ry : current status fo[r](#page-13-0) [t](#page-14-0)[h](#page-17-0)[e](#page-18-0)[l](#page-21-0)[a](#page-22-0)[t](#page-23-0)[t](#page-26-0)[i](#page-27-0)[c](#page-28-0)e HVP calculations

- First sub-percent lattice calculation by BMWc (competitive with the data-driven approach)
- If confirmed, would reduce the discrepancy with experiment to $< 2\sigma$
- \triangleright Need confirmation by other lattice groups
- \blacktriangleright Ultimate Goal : 0.2%
	- average between lattice and dispersive might help ...
	- ... but only if they agree
	- it is probably too soon to quote a "SM estimate of the LO-HVP" with $< 0.5\%$ precision

[W](#page-3-0)[h](#page-6-0)[a](#page-7-0)[t](#page-10-0) [c](#page-12-0)ould go wrong on the [l](#page-14-0)[a](#page-16-0)[t](#page-18-0)[t](#page-19-0)[i](#page-20-0)[c](#page-21-0)[e](#page-22-0)[?](#page-26-0)

• Is the continuum extrapolation under control ?

 \rightarrow Based on Symanzik Effective Field Theory : one expects a^2 scaling ...

- \rightarrow ... up to logarithms $a^2/\log(a)^{\Gamma}$!
- \rightarrow For pure Yang-Mills one has $\Gamma > 0$. Might also be true for QCD [Husung et al '19]

 \rightarrow Often logarithms are neglected (2 reasons : Γ are not known + lack of data)

[W](#page-3-0)[h](#page-6-0)[a](#page-16-0)[t](#page-19-0) [c](#page-12-0)ould go wrong on the [l](#page-14-0)att[i](#page-20-0)[c](#page-21-0)[e](#page-22-0)[?](#page-26-0)

- \triangleright What can be done?
	- comparison between different collaborations :
		- different discretization of the action (Wilson, Domain Wall, staggered)
		- with different approach to the continuum limit.
	- it is extremely important to have many (small!) lattice spacings
		- Are we in the scaling regime ? Are logarithms under control ?
- \triangleright Time momentum representation (TMR)

$$
a_{\mu}^{\text{HVP}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dx_0 \ K(x_0) \ G(x_0) \ , \qquad G(x_0) = -\frac{1}{3} \sum_{k=1}^3 \sum_{\vec{x}} \ \langle V_k(x) V_k(0) \rangle
$$

- most collaborations use the TMR method (time in treated differently)
- in principle it is perfectly fine, but we might miss a sytematic error
- different approaches have been proposed [Meyer '18], not yet used in practice
- \triangleright Cross check using a second observable :
	- based on the same lattice data (vector correlator)
	- easier to calculate

[W](#page-3-0)[i](#page-5-0)[n](#page-7-0)[d](#page-9-0)[o](#page-11-0)[w](#page-12-0) observables and cro[s](#page-13-0)[s](#page-14-0)[-](#page-16-0)[c](#page-17-0)[h](#page-19-0)[e](#page-20-0)[c](#page-22-0)[k](#page-25-0)[s](#page-26-0)

$$
a_{\mu}^{\min} = \left(\frac{\alpha}{\pi}\right)^2 \sum_{t} G(t) K(t) W(t; t_0, t_1)
$$

- \rightarrow Short distances (SD) \rightarrow Intermediate distances (ID)
- \rightarrow Long distances (LD)
- By construction, the sum over the 3 windows gives the full contribution

$$
a_{\mu}^{\text{LO-HVP}} = a_{\mu}^{\text{win,SD}} + a_{\mu}^{\text{win,ID}} + a_{\mu}^{\text{win,LD}}
$$

▶ Each window observakbe is subject to very different systematic errors

[C](#page-3-0)[r](#page-4-0)[o](#page-6-0)[s](#page-7-0)[s](#page-10-0)[-](#page-11-0)[c](#page-12-0)hecks : window quant[i](#page-13-0)[t](#page-14-0)[i](#page-16-0)[e](#page-17-0)[s](#page-18-0)

 \triangleright workshop organized in November 2020 to discuss those issues [https ://indico.cern.ch/event/956699/]

- lattice results systematically above the R -ratio
- **Example 2** agreement between lattice calculations not yet satisfactory : need to be improved!

Dispersive framework ('21) $a_{\mu} \times 10^{11}$

- \triangleright results from [Phys. Rept. 887 (2020) 1-166]
- \blacktriangleright Enters at $O(\alpha^3)$

$$
\blacktriangleright \Delta a_\mu^{\rm exp} = 28 \times 10^{-10} \approx 3 \times a_\mu^{\rm hlb}
$$

[D](#page-3-0)[i](#page-5-0)[r](#page-6-0)[e](#page-7-0)[c](#page-9-0)[t](#page-11-0) [l](#page-12-0)attice calculation of [th](#page-13-0)[e](#page-16-0)[H](#page-19-0)[a](#page-21-0)[d](#page-23-0)[r](#page-25-0)[o](#page-27-0)[n](#page-28-0)ic light-by-light contribution

- Two collaborations: RBC/UKQCD and Mainz, both using position space approaches
- Mainz approach : position-space [Eur.Phys.J.C 81 (2021)] [Eur.Phys.J.C 80 (2020)3]

$$
a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int d^4 y \int d^4 x \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y) i\hat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y)
$$

$$
i\hat{\Pi}_{\rho,\mu\nu\lambda\sigma}(x,y) = - \int d^4 z z_{\rho} \langle J_{\mu}(x)J_{\nu}(y)J_{\sigma}(z)J_{\lambda}(0) \rangle
$$

 $\to \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$ is the QED kernel, computed semi-analytically in infinite volume \rightarrow Avoid $1/L^2$ finite-volume effects from the massless photons $\Rightarrow \sim e^{-m_{\pi}L}$

- RBC/UKQCD : [T. Blum et al, Phys.Rev. D93 (2016)] [arXiv :1911.08123]
	- \rightarrow Similar strategy
	- \rightarrow QED_L: photon in finite volume \Rightarrow power-law volume corrections

[W](#page-3-0)[i](#page-5-0)[c](#page-6-0)[k](#page-9-0)[co](#page-12-0)ntractions : 5 classes [o](#page-14-0)[f](#page-17-0) [d](#page-19-0)[i](#page-21-0)[a](#page-22-0)[g](#page-23-0)[r](#page-26-0)[a](#page-27-0)[m](#page-28-0)s

• Fully connected contribution

• Leading 2+2 (quark) disconnected contribution

• Sub-dominant disconnected contributions (3+1, 2+1+1, 1+1+1+1)

- Second set of diagrams vanish in the SU(3) limit (at least one quark loop which couple to a single photon) \rightarrow Smaller contributions, have been shown to be irrelevant at the 10% level [Mainz '21 : 2104.02632]
- 2+2 disconnected diagrams are not negligible !
	- \rightarrow Large-N_c prediction : 2+2 disc \approx 50 % \times connected [Bijnens '16]
	- \rightarrow Cancellation \Rightarrow more difficult (correlations does not seems to help in practice ...)

[L](#page-3-0)[a](#page-4-0)[r](#page-6-0)[g](#page-7-0)[e](#page-10-0) [c](#page-12-0)ancellation between t[h](#page-13-0)[e](#page-14-0)[t](#page-18-0)[w](#page-20-0)[o](#page-21-0) [l](#page-25-0)[e](#page-26-0)[a](#page-28-0)ding contributions

• Connected and disconnected contributions from Mainz ($m_{\pi} = 200$ MeV)

• Connected and disconnected contribution from RBC/UKQCD at the physical pion mass

• signal/noise problem even more difficult than HVP

[W](#page-3-0)[h](#page-11-0)[i](#page-7-0)[c](#page-9-0)h errors are relevant

Mainz group [2104.02632]

- Statistical noise at long distances
- Finite-volume effects are large
- Continuum extrapolation

- \rightarrow Chiral extrapolation milder than expected (based on π^0 -pole contribution)
- \rightarrow Isospin-breaking corrections are not relevant here
- \bullet Both long-range contribution and finite-volume effects are well describe by π^0 -exchange :

 \rightarrow the key ingredient is the pion transition form factor $\mathcal{F}_{\pi^0 \gamma \gamma}(Q_1^2,Q_2^2)$

[L](#page-3-0)[a](#page-4-0)[t](#page-6-0)[t](#page-7-0)[i](#page-9-0)[c](#page-10-0)[e](#page-12-0) inputs for the dispers[i](#page-13-0)[v](#page-14-0)[e](#page-16-0)[f](#page-19-0)[r](#page-20-0)[a](#page-21-0)[m](#page-23-0)[e](#page-27-0)[w](#page-28-0)ork : the pion-pole contribution

• Pion transition form factor

• Fully model independant

$$
a_{\mu}^{\text{HLbL};\pi^0} = (59.9 \pm 3.6) \times 10^{-11}
$$

$$
\rightarrow
$$
 Compute with the dispersive result
\n $a_{\mu}^{\mathrm{HLbL};\pi^{0}} = 62.6^{+3.0}_{-2.5} \times 10^{-11}$
\n[Hoferichter et al. '18]

- [A. G et al, Phys.Rev. D100 (2019)]
	- \bullet The BMW and ETM collaborations have presented preliminary results for the η and η'

[C](#page-3-0)[o](#page-5-0)[n](#page-6-0)[c](#page-9-0)[l](#page-10-0)[us](#page-12-0)ion HLbL : Summary[o](#page-14-0)[f](#page-16-0)[l](#page-19-0)[a](#page-20-0)[t](#page-21-0)[t](#page-22-0)[i](#page-23-0)[c](#page-26-0)[e](#page-27-0) results

Status of hadronic light-by-light contribution

- \blacktriangleright First lattice QCD results are now published
	- \rightarrow In good agreement with the dispersive framework
	- \rightarrow But systematic errors are sizeable, cross-checks would be welcome
- \blacktriangleright Lattice can also provide valuable inputs to the dispersive framework
	- \rightarrow pseudoscalar-pole contribution (π^0, η, η')
- \triangleright Close, but not yet at the target precision ($< 10\%$)

[C](#page-3-0)[o](#page-5-0)[n](#page-6-0)[c](#page-9-0)[l](#page-10-0)[us](#page-12-0)ion

► First run $\approx 1/20$ of the expected total statistics

- \rightarrow are we close to NP discovery?
- \rightarrow non-perturbative hadronic contributions dominate the error
- \rightarrow the recent BMW lattice result reduces the tension with the measurement!
- \rightarrow ... but there is now a tension with the dispersive framework : need confirmation!

\triangleright Rapid progress on the lattice

- \rightarrow first sub-percent lattice calculation by BMW, but in tension with R-ratio estimates
- \rightarrow first complete calculation by Mainz : confirm the size of the HLbL contribution
Antoine Gérardin 32

[H](#page-3-0)[a](#page-5-0)[d](#page-7-0)[r](#page-9-0)[o](#page-10-0)[n](#page-12-0)ic vacuum polarizatio[n](#page-13-0) [:](#page-16-0)[d](#page-19-0)[i](#page-20-0)[s](#page-21-0)[p](#page-23-0)[e](#page-25-0)[r](#page-27-0)[s](#page-28-0)ive framework

 \bullet Use analyticity $+$ optical theorem

$$
R_{\text{had}}(s) = \frac{\sigma^0(e^+e^- \to \gamma^* \to \text{hadrons})}{(4\pi\alpha^2/3s)}
$$

• $\widehat{K}(s)$ is a known kernel function

$$
a_\mu^{\rm HVP} = \Big(\frac{\alpha m_\mu}{3\pi}\Big)^2 \left\{ \int_{m_\pi^2}^{E_{\rm cut}^2} {\rm d}s \frac{R_{\rm had}^{\rm data}(s)\hat{K}(s)}{s^2} + \int_{E_{\rm cut}^2}^\infty {\rm d}s \frac{R_{\rm had}^{\rm pQCD}(s)\hat{K}(s)}{s^2} \right\}
$$

• Compilation of experimental data from many experiments

[H](#page-3-0)[a](#page-5-0)[d](#page-7-0)[r](#page-9-0)[o](#page-10-0)[n](#page-12-0)ic vacuum polarizatio[n](#page-13-0)[a](#page-17-0)[n](#page-18-0)[d](#page-20-0)[d](#page-23-0)[i](#page-25-0)[s](#page-26-0)[p](#page-28-0)ersive theory

- Subject to experimental uncertainties : careful propagation of experimental uncertainties
	- \rightarrow Groups with \neq methodologies are in good agreement [Davier et al. '19] [Keshavarzi et al. '20]
	- \rightarrow But local discrepancies (tensions already there in the experimental data)!
	- \rightarrow Problematic for the dominant $\pi\pi$ channel

Difference between BABAR and KLOE : $\Delta a_{\mu} = 9.8(3.4) \times 10^{-10}$

Difference pheno / exp for the $g - 2$: $\Delta a_{\mu} = 28(8) \times 10^{-10}$

• White paper average for the dispersive approach

 $a_{\mu}^{\text{hvp}} = 693.1(2.8)_{\text{stat}}(0.7)_{\text{DV}+{\text{QCD}}}(2.8)_{\text{KLOE/BABAR}} \times 10^{-10} \quad [0.58\%]$