

NEUTRINO PHYSICS, (SOME) ANOMALIES, AND INVESTIGATIONS

Kirsty Duffy UKRI Future Leaders Fellow, University of Oxford Lake Louise Winter Institute 2022

Run 3469 Event 53223/ Oct

- Neutrinos are one of the least-well-understood particles in the Standard Model
- Neutrino oscillation is beyond the Standard Model, and opens the door to exciting new possibilites
- However, a lot remains that we don't understand (both within the 3-flavour oscillation picture and outside it)
- New data from current and future precision experiments will shed light on this

MY PERSONAL BIAS

- Overview of (experimental) neutrino physics
- MiniBooNE anomaly
- MicroBooNE recent results

NEUTRINOS: WHAT WE KNOW

- Fundamental particles in the Standard Model
- Interact via weak force
- "Paired" with charged leptons

NEUTRINO OSCILLATION

TWO SETS OF EIGENSTATES

Probability to detect a neutrino of a given flavour oscillates as:

$$\sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right)$$
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 4\cos^{2}\theta_{13}\sin^{2}\theta_{23}$$
$$\times [1 - \cos^{2}\theta_{13}\sin^{2}\theta_{23}]\sin^{2}\frac{\Delta m_{32}^{2}L}{4E}$$
$$+ (\text{solar, matter effect terms})$$

Probability to detect a neutrino of a given flavour **oscillates** as:

Neutrino oscillation
 → Neutrinos have mass
 → Physics beyond the Standard Model!

Neutrinos	MiniBooNE Anomaly	MicroBooNE Results
How many neutrinos are there?	How do neutrinos interact in the nuclear medium?	Which neutrino is heaviest? Which is lightest?
Is neutrino oscillation different for neutrinos and antineutrinos?	Why is neutrino mixing so large?	How much do neutrinos weigh?
What else can neutrinos teach us?	Are neutrinos their own antiparticles?	Why are neutrino masses so much smaller than all other particles?

THE MASS HIERARCHY

MEASURING THE MASS HIERARCHY: MATTER EFFECTS

- Long-baseline experiments are sensitive to the mass hierarchy via matter effects
- Additional charged-current interactions in matter for V_e, not available to V_μ, V_τ
- → "extra potential" for V_e breaks mass-hierarchy symmetry (depending on which mass state contains the most V_e)

MEASURING THE MASS HIERARCHY: JUNO

Phys.Lett. B533 (2002) 94-106

Prog.Part.Nucl.Phys. 123 (2022) 103927

 $\times 10^{3}$ Reactor neutrino 2000 days of data taking No oscillations 120 experiment: \bar{v}_e disappearance Only solar term at baseline ~50 km Normal ordering 100 Inverted ordering Sensitive to both oscillations Events per 1 MeV 80 according to Δm^2_{21} and $\Delta m^{2}_{32} \rightarrow interplay of$ 60 $\sin^2 2\theta_{12}$ **both** gives sensitivity to mass hierarchy $\sin^2 2\theta_{13}$ 40 Extremely precise energy 20 Δm_{21}^2 Δm_{32}^2 resolution \rightarrow **determine** mass hierarchy at 3σ in 0 1 2 3 0 4 5 6 7 8 9 **6** years $E_{\overline{\nu}_e}$ (MeV)

How much do neutrinos weigh?

MEASURING THE NEUTRINO MASS

$$\sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right)$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

- Neutrino oscillation tells us that neutrinos have mass
- But not the absolute mass (only the Δm² differences)

MEASURING THE NEUTRINO MASS

- New KATRIN result: <u>Nature</u>
 <u>Physics volume 18, pages160</u>
 <u>166</u>, 14th February 2022
- World's best constraint on neutrino mass
- Best fit: $m_v = 0.26 \pm 0.34 \text{ eV}^2\text{c}^{-4}$
- Upper limit of m_v < 0.8 eVc⁻² at 90% confidence level

 $\times \sin \frac{\Delta m_{21}^2 L}{\Lambda F} \sin^2 \frac{\Delta m_{32}^2 L}{\Lambda F} \sin \delta_{CP}$

+ (CP-even, solar, matter effect terms)

(TRYINGTO) MEASURE CP VIOLATION

T2K (Tokai to Kamioka)

NOvA (NuMI Off-axis V_e Appearance)

(TRYINGTO) MEASURE CP VIOLATION

How do neutrinos interact in the nuclear medium?

NEUTRINO INTERACTIONS

NEUTRINO INTERACTIONS

NEUTRINO INTERACTIONS

Are neutrinos their own antiparticles?

MiniBooNE Anomaly

ARE NEUTRINOS THEIR OWN ANTIPARTICLES?

- Uniquely in the Standard Model, neutrinos could be their own particles
 → Majorana fermions
- Could explain small neutrino mass
- Most promising way to search: neutrinoless double beta decay

MiniBooNE Anomaly

ARE NEUTRINOS THEIR OWN ANTIPARTICLES?

- Uniquely in the Standard Model, neutrinos could be their own particles
 → Majorana fermions
- Could explain small neutrino mass
- Most promising way to search: neutrinoless double beta decay

MiniBooNE Anomaly

What else can neutrinos teach us?

COSMIC NEUTRINO BACKGROUND

SOLAR NEUTRINOS

Nature volume 587, pages 577–582 (2020)

SUPERNOVA NEUTRINOS

Super-Kamiokande: 12 IMB: 8 Baksan: 5

Supernova 1987a

Kirsty Duffy 35

GALACTIC NEUTRINOS

GALACTIC NEUTRINOS

How many neutrinos are there?

(A SMALL SELECTION OF) NEUTRINO ANOMALIES

There have been a number of anomalies observed in the past 20odd years that don't quite fit with the three-neutrino picture we know and love

	Experiment	Туре	Anomaly	
	lsnd	DAR	$\overline{\nu}_{e}$ appearance	
	MiniBooNE	SBL accel.	V _e appearance	
	MiniBooNE	SBL accel.	$\overline{\nu}_{e}$ appearance	
	GALLEX/SAGE/BEST	Source - e capture	V _e disappearance	
	Reactors	Beta decay	$\overline{\nu}_{e}$ rate	
			$\overline{\mathbf{v}}_{\mathrm{e}}$ shape	~
	ANITA	High energy	High-energy events	r. not o
			sisclaim	tive lis
See also:			Disexhau	,
R. Guennette, "Sho G. Karagiorgi, "Sho	rt-Baseline Neutrinos", APS-DPF 201 rt-baseline neutrino experiments and	9 <u>link</u> phenomenology", INSS 2019 link	< compared with the second s	

K. N. Abazajian et. al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [hep-ph] (2012) link

There have been a number of anomalies observed in the past 20odd years that don't quite fit with the three-neutrino picture we know and love

K. N. Abazajian et. al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [hep-ph] (2012) link

See also:

 $V_{\mu}, \overline{V}_{\mu},$

Liquid Scintillator Neutrino Detector: µ⁺ decay at rest experiment at Los Alamos National Lab

- Observed excess of V
 _e at 3.8σ
- If interpreted as two-flavour neutrino oscillation,
 requires Δm²~0.2-10eV²

Not consistent with any known 3-flavour oscillation

ANOMALIES: MINIBOONE

- Similar L/E as LSND: if an oscillation really exists, should see it here too
- Different energy, detector, beam, event signatures, backgrounds

- Recently released updated results (2021) with x2 more data than original anomaly (2009)
- Consistent with LSND results: combined significance of 6.1σ
- Best fit for neutrino oscillation hypothesis: $\Delta m^2 = 0.04 \text{ eV}^2$

Phys. Rev. D 103, 052002

Ve

MicroBooNE Results

MINIBOONE

800-ton mineral oil (CH₂₎ Cherenkov detector

Detect Cherenkov ring from electrons produced in V_e CC scattering interactions

However, photons produce

~ rete

identical Cherenkov rings

Is the excess electrons?

- Sterile neutrino oscillations → difficult to explain MiniBooNE excess and all other global data
- Best-fit 2-neutrino sterile oscillation appearance spectrum does not predict data well at very low energies
- More complex models can help
 - Mixed oscillations and decay
 - Resonance matter effects
 - Additional sterile neutrinos
 - Non-unitary mixing
 - …and many more!

Is the excess photons?

Several sources of photon backgrounds:

NC㧠mis-ID

 \blacksquare \rightarrow measured in-situ

Dirt (neutrino interactions outside the detector)

■ → beam timing

- Need x3.18 increase to explain excess
- \rightarrow to be investigated...

Or neither?

- Rich phenomenology developed in recent years
- I'll come back to this!

For now, it's clear that we need more information...

MICROBOONE

MicroBooNE Results

MicroBooNE: 170 ton Liquid **Argon Time Projection Chamber**

- Stable detector operation since 2015: **longest-running LArTPC to date**
 - >95% DAQ uptime
 - 1.52×10^{21} POT collected in total (analyses shown here use subsets, not full POT)

Grateful to Fermilab Accelerator Division, Cryogenics team, Operations team, and Scientific Computing Division!

Upper Upper

LArTPCs:

 → enable incredible precision measurements at scale
 → Transformative physics in oscillations, BSM, and crosssection measurements

Kirsty Duffy 63

9 cm

LARTPC STRENGTH: ELECTRONS AND PHOTONS Phys. Rev. D 104, 052002 (2021)

10

9

8

SHORT-BASELINE NEUTRINOS AT FERMILAB

MiniBooNE

SHORT-BASELINE NEUTRINOS AT FERMILAB

470m

Region Veto

500m

SHORT-BASELINE NEUTRINOS AT FERMILAB

INVESTIGATING THE MINIBOONE LOW-ENERGY EXCESS

I will give only a brief overview of the headline results from MicroBooNE

For more details and information, please see the following talk by N. Foppiani

MICROBOONE SELECTIONS

SINGLE PHOTON SEARCH

arXiv:2110.00409 [hep-ex]

SINGLE PHOTON SEARCH

arXiv:2110.00409 [hep-ex]

No evidence of an excess in either sample

OUR SELECTIONS

MicroBooNE Results

More details: N. Foppiani talk

arXiv:2110.14054 [hep-ex]

How many neutrinos are there?

OXFORD

81

- Neutrinos are one of the least-well-understood particles in the Standard Model
- Neutrino oscillation is beyond the Standard Model, and opens the door to exciting new possibilites
- However, a lot remains that we don't understand (both within the 3-flavour oscillation picture and outside it)
- New data from current and future precision experiments will shed light on this

Thank you for listening!

A NOTE ON NEUTRINO ENERGY

18 cm

- Each analysis selects different combinations of particles
- Each analysis uses a different reconstruction paradigm
- Electron-search results presented as a function of reconstructed neutrino energy
 - Remember we have to estimate neutrino energy from the particles we measure
 - → reconstructed neutrino energy != true neutrino energy
 - → AND reco→true mapping is different between analyses

Figure from https://arxiv.org/abs/0905.1793

Figure from https://arxiv.org/abs/0905.1793

$$\sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right)$$
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

Experimental data from PDG review of neutrino mixing

Solar neutrino experiments:

 $L = 10^{10} \text{ m}$ E = 1 MeV $\rightarrow \Delta m^2 = 10^{-10} \text{ eV}^2$

Atmospheric neutrino experiments:

 $L = 10^{4} - 10^{7} \text{ m}$ $E = 10^{2} - 10^{5} \text{ MeV}$ $\rightarrow \Delta \text{m}^{2} = 10^{-1} - 10^{-4} \text{ eV}^{2}$

Accelerator neutrino experiments (long-baseline):

 $L = 10^{5} - 10^{6} \text{ m}$ $E = 10^{3} - 10^{4} \text{ MeV}$ $\rightarrow \Delta m^{2} = 10^{-2} - 10^{-3} \text{ eV}^{2}$

Reactor neutrino experiments (medium-baseline):

 $L = 10^{4} - 10^{5} \text{ m}$ E = 1 MeV $\rightarrow \Delta m^{2} = 10^{-4} - 10^{-5} \text{ eV}^{2}$

Figure from https://arxiv.org/abs/0905.1793

THE PMNS MATRIX

$$c_{ij} = \cos\theta_{ij}$$

$$s_{ij} = \sin\theta_{ij}$$

$$\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = \begin{pmatrix}1 & 0 & 0\\0 & c_{23} & s_{23}\\0 & -s_{23} & c_{23}\end{pmatrix}\begin{pmatrix}c_{13} & 0 & s_{13}e^{-i\delta_{CP}}\\0 & 1 & 0\\-s_{13}e^{i\delta_{CP}} & 0 & c_{13}\end{pmatrix}\begin{pmatrix}c_{12} & s_{12} & 0\\-s_{12} & c_{12} & 0\\0 & 0 & 1\end{pmatrix}\begin{pmatrix}\nu_{1}\\\nu_{2}\\\nu_{3}\end{pmatrix}$$
flavour
flavour
nteraction
Four free parameters:
Three mixing angles θ_{12} , θ_{23} , θ_{13}
Each mixing angle describes mixing between two mass states (3c2 = 3)

One phase δ_{CP} -

I'll come back to what this parameter does...

THE PMNS MATRIX

$$\begin{aligned} \mathbf{c}_{ij} &= \cos \theta_{ij} \\ \mathbf{s}_{ij} &= \sin \theta_{ij} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ \mathbf{Atmospheric} \quad \mathbf{Reactor} \quad \mathbf{Solar} \end{aligned}$$

MEASURING THE MASS HIERARCHY: NOVA

- Long-baseline experiments are sensitive to the mass hierarchy via matter effects
- Additional charged-current interactions in matter for V_e, not available to V_μ, V_τ
- → "extra potential" for V_e breaks mass-hierarchy symmetry (depending on which mass state contains the most V_e)

 $(\Delta m^2)_{sol}$

()XF()RI)

THE MASS HIERARCHY

Some interesting motivation:

If the hierarchy turns out to be inverted → neutrinoless double beta decay experiments may have sensitivity to rule in/out Majorana neutrinos in the next few years

Oscillation is only sensitive to the size of Δm^2 , not the sign

→ We know the sign of Δm²₂₁ from solar neutrino measurements

→ We do not know the sign of $|\Delta m^2_{32}|$

One 190kt fiducial volume water Cherenkov detector 8 x Super-K FV

4 x 10kt fiducial volume liquid argon **TPC** detectors

TPC detectors

One 190kt fiducial volume water Cherenkov detector 8 x Super-K FV

One 190kt fiducial volume water Cherenkov detector 8 x Super-K FV

4 x 10kt fiducial volume liquid argon **TPC** detectors

Phys. Rev. Lett. 125, 201803 (2020) Phys. Rev. D 102, 112013 (2020) JINST 15, P03022 (2020) arXiv:2110.14065 [hep-ex] arXiv:2110.13978 [hep-ex] arXiv:2110.14080 [hep-ex]

LArtpc Strength: Low Detection thresholds

- Low thresholds → access to new information about nuclear effects, neutrino interactions
- Example: proton detection thresholds
- MicroBooNE: 250 MeV/c =
- ArgoNeuT: 200 MeV/c Phys. Rev. D 90, 012008 (2014)

Phys. Rev. D 98, 032003 (2018)

T2K: 500 MeV/c MINERvA: 450 MeV/c

Phys. Rev. D 99, 012004 (2019)

LARTPC STRENGTH: ELECTRONS AND PHOTONS

Electrons and photons produce showers in LArTPCs

 Distinguish using dE/dx at start of shower and start point

SINGLE PHOTON SEARCH

arXiv:2110.00409 [hep-ex]

 Simple hypothesis test: use combined Neyman-Pearson χ² as test statistic

Nucl. Inst. Meth.A 961 (2020) 163677

- Data consistent with nominal $\Delta \rightarrow N\gamma$ prediction
- Data rejects LEE model hypothesis in favour of nominal prediction at 94.8% CL

