DEAP

Results and Upgrades of DEAP-3600

Lake Louise Winter Institute - February 21, 2022 Courtney Mielnichuk on behalf of the DEAP-3600 Collaboration

DEAP-3600 Collaboration

- Approximately 100 collaborators
- Canada, UK, Germany, Mexico, Italy, USA, Russia, Spain, Poland

DEAP-3600 Detector

- 3.3 tons of liquid argon
- 2 km underground at SNOLAB (Sudbury, ON)

Pulse Shape Discrimination:	Particle Type	F _{prompt}
$F_{prompt} = \frac{Prompt PE}{Total PE}$	LAr Alpha	0.75
	Nuclear Recoil (WIMPs)	0.7
	Beta/Gamma	0.3
Time Full PSD model published in <u>Eur. PHys. J. C 81,823 (2021)</u>	GAr Alpha	0.12

C. Mielnichuk - University of Alberta

WIMP Dark Matter Search

- 231 live day exposure recorded during first year of operation
- No candidate signal events in WIMP-search region of interest
- Leading limit on the WIMP-nucleon spin-independent cross section on a **LAr target**
 - 3.9×10^{-45} cm² for a 100 GeV/c² WIMP mass at 90% C.L
- Full results published in <u>Phys. Rev. D. 100, 022004</u>.
- Current cumulative background model for WIMP search includes:
 - Cherenkov in acrylic
 - Radiogenic & cosmogenic neutrons
 - Surface alpha's
 - Neck alpha decays
 - Dust alpha decays in LAr

Dark Matter Interaction - Astrophysical Parameters

Courtesy of A. Zuñiga-Reyes

DM velocity distribution with substructure

WIMP-nucleus scattering rate:
$$\frac{dR(t)}{dE_r} = N_T \frac{\rho_0}{m_\chi} \int_{v > v_{min}} f(\mathbf{v} + \mathbf{v}_E(t)) \frac{d\sigma_T(v, E_r)}{dE_R} d^3v$$

Velocity distribution function:

$$f(\mathbf{v}) = rac{1}{\sqrt{2\pi}\sigma} exp\left(-rac{|\mathbf{v}|^2}{2\sigma^2}
ight) \qquad \qquad f_{DM}(ec{v}) = (1-\eta_\chi)f_R(ec{v}) + \eta_\chi f_{sub}(ec{v})$$

- **f**_p: velocity distribution of a nearly round dark halo SHM (Maxwell Boltzmann distribution
- **F**_{sub}: velocity distribution of the substructure (3D Gaussian distribution)

Maxwell Boltzmann Distribution

 η_{χ} : relative DM density in substructure (0-30% for streams and ICs, 0-70% for Gaia Sausage)

Dark Matter Interaction - Particle/Nuclear Physics Parameters

Courtesy of A. Zuñiga-Reyes

WIMP-nucleus scattering rate:
$$\frac{dR(t)}{dE_r} = N_T \frac{\rho_0}{m_\chi} \int_{v > v_{min}} f(\mathbf{v} + \mathbf{v}_E(t)) \frac{d\sigma_T(v, E_r)}{dE_R} d^3v$$

- **R**: DM response function (contains the coupling strengths)
- W: nuclear response function (depends on the target used)
- K-index: represents 6 interactions (M, ϕ '', ϕ ''M are the non-zero terms for ⁴⁰Ar)
 - M describes the nucleon density inside the nucleus
 - φ" related to the angular momentum and spin of nuclei. It favours heavier elements with large, not fully occupied orbitals
 - ϕ ''M interference term, product of ϕ '' and M

Simultaneous Effects of all Model Variables

Courtesy of A. Zuñiga-Reyes

- Reinterpret 231-day null result of DEAP-3600 data with NREFT framework and potential dark matter substructures in the local halo

Lake Louise Winter Institute 2022

Multiple Scatter Signals from Supermassive Dark Matter

Courtesy of M. Lai

- Production mechanisms:
 - Inflation decays/gravity during inflation, thermal production in dark sectors, primordial black hole radiation
- Supermassive dark matter:
 - $\sigma_{\chi^{-n}} \cong 10^{-25} \text{cm}^2$ and $m_{\chi^2} \gtrsim 10^{12} \text{GeV}$
- DM particle loses a negligible amount of energy traveling through Earth and can reach underground detectors
 - Signal is multiply scattering particle depositing energy in LAr
- Multiple-scattering interactions create distinct photoelectron time distribution

Possible backgrounds:

- Pile-up of single scatter events
- Muons passing through LAr

ROI	PE range	Energy [MeV]	N_{peaks}^{min}	F_{prompt}^{max}
1	4000 - 20000	0.5 - 2.9	7	0.10
2	20000 – 30000	2.9 - 4.4	5	0.10
3	30000 - 70000	4.4 - 10.4	4	0.10
4	$70000-4 \times 10^8$	10.4 – 60000	0	0.05

Results of Blind Analysis of 813 Day Livetime with DEAP-3600

Courtesy of M. Lai

No candidate signals observed – full results published in Phys. Rev. Lett. 128, 011801

- Scattering cross section at zero momentum transfer, q, is the geometric size of the dark matter, regardless of target nucleus
- Strongly interacting dark matter

May arise from nuclear dark matter models with N_D nucleons, each with mass m_D and radius r_D resulting in a total mass of m_{χ} =N_Dm_D

Constraining Neck Alpha Backgrounds

Condensing 4.9 g/s LAr in neck region

Simulating Dust Alpha Backgrounds

- Alpha decay embedded in dust particulate will have reduced energy deposition in LAr and isotropic photon emission

Detector Hardware Upgrades

Objectives:

- 1. Tag/remove neck alpha backgrounds
- 2. Filter LAr to remove dust particles

Slow WLS Acrylic Flow Guide Coating

- WLS characterization published in <u>JINST</u>
- Technical paper on slow WLS coating for background rejection in LAr submitted to <u>NIMA</u>

- Shift F_{prompt} of alpha decays occurring in the neck region out of the WIMP region of interest
- Specific PSD variables can be tuned to tag neck alpha decays and verify the existing background model and surface activities

New flow guide construction:

External Cooling/Dust Removal System

- Vacuum deployment system used to insert pipes through the existing neck/glove box
- Dust removal pipe:
 - extract argon in a liquid state and ability to filter liquid argon through existing purification system
- Alternate LAr delivery pipe:
 - internal cooling coil disabled achieving subsequent warming of the neck region.
 - Warm neck region → no LAr film on flow guide surfaces

Summary

- DEAP-3600 recorded LAr physics data from November 2016 to March 2020

- 231 live day WIMP search
- Constraints using NREFT and halo substructure (231 live day dataset)
- Search for multi-scattering dark matter (831 live day dataset, blind analysis)
- More analyses coming soon...
 - Full 802 live day WIMP search (blind analysis)
- Detector Hardware Upgrades underway
 - Fix of internal neck seal to allow full fill with 3600 kg LAr
 - Slow WLS coating of acrylic flow guides to tag/remove neck alpha backgrounds
 - External cooling and filtration system
 - remove dust particulates from LAr
 - operation with warm neck region

BACK UP SLIDES...

Extra Slide - Multiply Interacting Dark Matter (Analysis)

Courtesy of M. Lai

- Excluded data:
 - $(3 \pm 3) \mu s/trigger$ for signal spanning two events
 - 9 days to test selection cuts
 - 6 days from the muon coincidence sideband
- Low level cuts
 - < 5 % PE in the brightest channel (acceptance of 87%)
 - <5% PE in GAr PMTs (acceptance of 99%)
- Background below 10 MeV
 - Pile-up event
 - Simulation of pile-up (assume Poissonian statistics for the number of pulses)
 - Agreement between data and simulation within 5%
- Background above 10 MeV
 - Muon flux ~ 17 muons per day at SNOLAB
 - Removal of any event within [-10,90]µs from muon veto trigger
 - > 99% of muons triggered in coincidence are rejected
 - Muons removed by F_{prompt}<0.05
- In all the ROI's the background level is 0.05 ± 0.03

Extra Slide - Multiply Interacting Dark Matter Exclusion Boundaries

- Lower and upper exclusion boundaries are flat because the cross section sensitivity is only dependent on the detector's multi-scatter acceptance
- Right-hand boundary is nearly vertical due to the drop in DM flux with increasing m_D (above the notch is the region where the Earth overburden is dominated by the crust
- Left-hand boundary $\sigma_{T_{\chi}} \propto m_D$ due to attenuation in the overburden

Extra Slide - Effective Operators for NREFT

Slide Credit: A. Zuñiga-Reyes

Effective operators for 40 Ar

 $\mathcal{O}_1 = 1_{\gamma} 1_N,$ $\mathcal{O}_3 = i \vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}_\perp \right),$ $\mathcal{O}_5 = i \vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}_\perp \right),$ $\mathcal{O}_8 = \vec{S}_{\gamma} \cdot \vec{v}_{\perp},$ $\mathcal{O}_{11}=i\vec{S}_{\chi}\cdot\frac{\vec{q}}{m_{N}},$ $\mathcal{O}_{12} = \vec{v}_{\perp} \cdot (\vec{S}_{\nu} \times \vec{S}_{N}),$ $\mathcal{O}_{15} = \left(\vec{s}_{\chi} \cdot \frac{\vec{q}}{m_{\perp}}\right) \left(\vec{s}_N \times \vec{v}_{\perp}\right) \cdot \frac{\vec{q}}{m_{\perp}}.$ Interaction Lagrangian (L_{int}): a sum over i effective operators, where c_i is the coupling constant associated with the O_i operator

$$\mathcal{L}_{int} = \sum_i c_i \mathcal{O}_i$$

Photon mediated operators can also be parametrized as a linear combination of NREFT operators

S_{χ}: DM spin, S_N: nuclear spin, q: momentum transfer, v₁: velocity perpendicular to q

Lake Louise Winter Institute 2022

Extra Slide - Dark matter velocity distributions

Slide Credit: A. Zuñiga-Reyes

Extra Slide - Constraints for effective operators

Slide Credit: A. Zuñiga-Reyes

Isospin-violating scenarios

Extra Slide - Effect on different sub-structures

Slide Credit: A. Zuñiga-Reyes

C. Mielnichuk - University of Alberta

Lake Louise Winter Institute 2022

Extra Slide - Limits on specific interactions for NREFT

Slide Credit: A. Zuñiga-Reyes

Specific Interactions

Xenonphobic Dark Matter

Extra Slide - Flow guide machining

Center for Particle Physics - DEAP-3600 - Dark Matter Experiment using Argon Pulseshape discrimination

FlowGuide component machined in a low-radon environment

University of Alberta - Physics Machine Shop - Low-Radon Cleanroom - Tony.Vinagreiro@uaberta.ca 2014/2020

- Designed to deploy stainless steel tubes through the neck of the existing detector
- Deployment will be done under vacuum in a metal sealed system that goes through the existing DEAP glovebox to prevent radon from entering the detector
 - **1.** Install lower small-diameter-deployment-device (SDDD) on top of glovebox

2. Assemble upper SDDD and installation tower (contains LAr-fill or dust pipe)

3. Lower dust or fill pipe into inner detector

3. Lower dust or fill pipe into inner detector

