

Recent soft-physics results in ALICE

Vytautas Vislavicius for the ALICE Collaboration Lund University, Sweden

Lake Louise Winter Institute, 2022

Relativistic Heavy-Ion Collisions

and hadronization, all in $< 10^{-22}$ second

• Non-perturbative QCD processes lead to quark-gluon plasma (QGP) production, evolution,

Relativistic Heavy-Ion Collisions

- Non-perturbative QCD processes lead to qua and hadronization, all in < 10⁻²² second
- Measurement: particles produced at the final stage of QGP evolution
 - Heavy-ion research: infer properties of initial state and QGP from measured particles

Non-perturbative QCD processes lead to quark-gluon plasma (QGP) production, evolution,

The ALICE detector in Run 1 & 2

Run 1 & 2 TPC: MWPC readout ~1 kHz (Pb-Pb)

Run 1 & 2 ITS: ~ 10⁷ channels

The ALICE detector in Run 3

Run 1 & 2 TPC: MWPC readout ~1 kHz (Pb—Pb)

Run 3 TPC: GEM readout ~50 kHz (Pb-Pb)

Run 1 & 2 ITS: ~ 10⁷ channels

Run 3 ITS2 & MFT: 13×10⁹ pixels

The ALICE detector in Run 3

Run 1 & 2 TPC: MWPC readout ~1 kHz (Pb—Pb)

Run 3 TPC: GEM readout ~50 kHz (Pb-Pb)

 New trigger detector (FIT) Readout upgrade in several detectors Continuous readout Combined Online-Offline system (O²)

From collision to particle production

Overlap between colliding nuclei: \Rightarrow Initial state, geometry & its fluctuations

Hydrodynamical expansion of QGP: \Rightarrow Radial and anisotropic flow, sensitive to initial state and properties of QGP

Freeze-out and hadronization: ⇒ Bulk particle production in a thermalised medium, sensitive to fireball volume and temperature

Radial vs. elliptic flow in heavy-ion collisions

 p_{T} - differential p/ π ratio:

- Multiplicity-dependent "boost" of the ratio towards higher p_T

 \Rightarrow Smaller volume \rightarrow larger mean p_{T}

 \Rightarrow Dominantly driven by $\langle dN_{ch}/d\eta \rangle$, slightly larger in Xe—Xe than in Pb—Pb, but comparable

Radial vs. elliptic flow in heavy-ion collisions

 p_{T} - differential p/ π ratio:

- Multiplicity-dependent "boost" of the ratio towards higher p_T \Rightarrow Dominantly driven by $\langle dN_{ch}/d\eta \rangle$, slightly larger in Xe—Xe than in Pb—Pb, but comparable
 - \Rightarrow Smaller volume \rightarrow larger mean p_T

 v_2 in Pb—Pb and Xe—Xe collisions:

Significantly larger in Pb—Pb even at comparable $\langle dN_{ch}/d\eta \rangle \Rightarrow$ Sensitive to initial geometry

Flow measurements in Pb—Pb collisions

Measure v_2 using *m*-particle correlations

• Different *m*'s probe different moments of underlying v_2 PDF

 $\Rightarrow v_2\{2\} > v_2\{4, 6, 8\}$ due to different

contributions from flow fluctuations

⇒ Can study the behaviour of underlying PDF

Flow measurements in Pb—Pb collisions

Measure v_2 using *m*-particle correlations

Different *m*'s probe different moments of underlying v_2 PDF

 $\Rightarrow v_2\{2\} > v_2\{4, 6, 8\}$ due to different

contributions from flow fluctuations

⇒ Can study the behaviour of underlying PDF

Second moment constant up to moderate p_{T} , independent of species

$$F(v_2) = \frac{\sigma(v_2)}{v_2}$$

Flow measurements in Pb-Pb collisions

Measure v_2 using *m*-particle correlations

- Different *m*'s probe different moments of underlying v_2 PDF
 - $\Rightarrow v_2\{2\} > v_2\{4, 6, 8\}$ due to different

contributions from flow fluctuations

- \Rightarrow Can study the behaviour of underlying PDF
- Second moment constant up to moderate p_{T} , independent of species
- Skewness (γ_1) and kurtosis (γ_2): clear p_T dependence:

 \Rightarrow Initial geometry $\rightarrow v_2$, which is later modified by the evolution of QGP

Correlation between v_2 and $[p_T]$

- Shape of the fireball: anisotropic flow, $\varepsilon_n \to v_n$
- Size of the fireball: radial flow, $[p_T]$, $1/R \rightarrow [p_T]$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between v_n and p_T

For deformed nuclei:

• Significantly smaller ρ_2 in central Xe-Xe compared to Pb-Pb

 \Rightarrow Deformation β reduces ρ_{γ}

Study with Pearson correlation coefficient: $v_n^2, [p_T]$ COV $\rho_n \equiv \rho \left(v_n^2, \left[p_{\rm T} \right] \right) =$ $\sqrt{\operatorname{var}(v_n^2)}$

G. Giacalone, Phys. Rev. C 102, 024901 (2020)

Correlation between v_2 and $[p_T]$

- Shape of the fireball: anisotropic flow, $\varepsilon_n \to v_n$
- Size of the fireball: radial flow, $p_{\rm T}$, $1/R \rightarrow p_{\rm T}$
- Initial state: geometry and fluctuations of shape and size
- Final state: correlation between v_n and p_T

For deformed nuclei:

• Significantly smaller ρ_2 in central Xe-Xe compared to Pb-Pb

 \Rightarrow Deformation β reduces ρ_{γ}

Probing initial state:

Low multiplicity: geometry → initial momentum correlations ⇒ Change of slope → presence of color glass condensate (CGC)?

ρ_2 in Pb – Pb and Xe – Xe

- ρ_2 slightly larger in Pb—Pb compared to Xe—Xe
- Comparison to models:
 - Below 20% centrality, all models do good

- More peripheral \rightarrow best described by models with IP-Glasma

• Xe—Xe:

 $-\beta = 0.162$ gives better description in most central collisions, similar to $\beta = 0$ in more peripheral

ρ_2 in Pb – Pb and low multiplicity

- ρ_2 in Pb—Pb decreasing with decreasing $N_{\rm ch}$ down to around $N_{\rm ch} \sim 100$ particles ⇒ More pronounced geometry in smaller system
- Signs of increase at very low $N_{\rm ch}$ \Rightarrow Signs of initial state or other effects? ⇒ Answer will be provided by OO in Run 3!
- IP-Glasma+MUSIC+UrQMD predicts a steeper fall
- Change of slope not unique to CGC models

Summary

- Precision flow measurements provide new input to study the properties of the quark-gluon plasma
- The PDF of v_2 :
 - Sensitive to collision geometry ⇒ important to initial state models
 - Evolution of PDF with $p_T \Rightarrow$ test for hydrodynamical models
- v_2 fluctuations independent of particle species
- Correlation between v_2 and p_T :
 - $-\rho_2$ better described by models with CGC
 - Slope change of ρ_2 not unique to CGC models

Backup

Backup

 p_T -differential v_2 {6,8}/ v_2 {4} ratios

- Around 2% difference between v_2 {4} and v_{2} {6,8} at low p_{T}
- Further splitting between $v_2{6}$ and $v_2{8}$, smaller than 1%

 \Rightarrow Underlying PDF of v_2 shows evolution with p_{T} , becomes consistent with Bessel-Gaussian at around $p_{\rm T} = 3.5 \text{ GeV}/c$

