Measurements of multi-boson production including vector-boson scattering at ATLAS

February 25, 2022

Ben Carlson Westmont College

On behalf of the ATLAS collaboration

Outline

1. Motivation & ATLAS

- Why rare EW processes
- ATLAS detector

2. EW $\gamma Z \rightarrow \ell \ell$

- Analysis strategy
- Separating strong & EW
- Results

3. EW $\gamma Z \rightarrow \nu \nu$

- Invisible final state
- Selections & background
- Interplay with searches
- 4. WWW
- 5. Effective theory interpretation

Motivation

Measuring deviations in *rare* SM processes Measuring rare SM backgrounds for **searches**

ATLAS detector

Outline

1. Motivation & ATLAS

- Why rare EW processes
- ATLAS detector

2. EW γZ→ℓℓ

- Analysis strategy
- Separating strong & EW
- Results

3. EW $\gamma Z \rightarrow \nu \nu$

- Invisible final state
- Selections & background
- Interplay with searches
- 4. WWW
- 5. Effective theory interpretation

Electroweak processes

Electroweak diagrams are $O(\alpha_{EW}^4)$

Vector boson scattering

non-VBS

 $Z\gamma$ probes the neutral gauge coupling with a larger cross section than ZZ

|γ**Ζ→**ℓℓ

Spectacular signature in dilepton (ee, $\mu\mu$) + γ final state

Selecting Z bosons

- Trigger on electrons or muons ($\sim 1/3$ of recorded events)
- Single lepton trigger $p_T > 26 \text{ GeV}$
- Two electron triggers: $p_T > 24 GeV$
- Asymmetric two muon triggers: 22 (sub-leading 8) GeV
- Offline requirements: opposite sign leptons & a photon
- Offline isolated electron muon with $p_T > 30$ (20) GeV
- Isolated photon with $p_T > 25 \text{ GeV}$

ATLAS-CONF-2021-038

Electroweak selections

Large difference in dijet rapidity & dijet invariant mass m_{jj}

Centrality

Signal enhanced Co

Control sample

Background & results

Dominant background from QCD γZ

QCD γ Z estimated from simultaneous fit of control samples with $\zeta > 0.4$

 $\sigma_{EW} = 4.49 \pm 0.40$ (stat.) ± 0.42 (syst.) fb

 $\sigma_{EW}^{pred} = 4.73 \pm 0.01 \text{ (stat.)} \pm 0.15 \text{ (PDF)}_{-0.22}^{+0.23} \text{ (scale) fb.}$

Measurement in agreement with prediction Uncertainty of 13%

Outline

1. Motivation & ATLAS

- Why rare EW processes
- ATLAS detector

2. EW $\gamma Z \rightarrow \ell \ell$

- Analysis strategy
- Separating strong & EW
- Results

3. EW $\gamma Z \rightarrow \nu \nu$

- Invisible final state
- Selections & background
- Interplay with searches
- 4. WWW
- 5. Effective theory interpretation

EW $\gamma Z \rightarrow \nu \nu$

Eur. Phys. J. C 82 (2022) 105

Run: 358300 Event: 1104384151 2018-08-14 14:20:39 CEST

Photon

$Br(Z \rightarrow vv) = 20\%$ $Br(\ell \ell) = 6\%$

jj mass: 3047 GeV MET: 201 GeV mT: 115 GeV photon pT: 74 GeV

VBF jets

$\gamma Z \rightarrow \nu \nu$ Trigger

Trigger on MET, with offline threshold of 150 GeV

- Useable with data/MC corrections at 150 GeV
- Compare to $Z \rightarrow \ell \ell$ with lower p_T lepton triggers

Backgrounds

Eur. Phys. J. C 82 (2022) 105

+ many more diagrams and interference

Eur. Phys. J. C 82 (2022) 105

Separating strong EWK

16

Selections

MET & Photon	g sossesses g QCD	$\begin{array}{l} MET > 150 \; GeV \\ H_{T}^{miss} > 130 \; GeV \\ Photon \; p_{T} : \; 15 115 \; GeV \end{array}$
Dijet event	9900000 ⁸ / V	Jet $p_T > 60$, 50 GeV (VBF jets) $N_{jet} = 2,3 p_T > 25 GeV$ Centrality > 0.4
m _{jj} , Δφ _{jj} ,Δη _{jj}	$q \xrightarrow{q} \overbrace{QQQ}_{g} v$ Z to invisible	$\Delta \eta_{jj} > 3 \& \eta_{j1} \cdot \eta_{j2} < 0$ $m_{jj} > 500 \text{ GeV} (binned)$
Lepton veto	$\begin{array}{c} q \longrightarrow p \\ q \longrightarrow q \\ W \longrightarrow \ell \\ W \longrightarrow \ell \\ V \end{array}$	No electron (muon) with $p_T > 4 \text{ GeV}$

Observation of EW Z γ

First time observed in $Z \rightarrow vv$ channel

$\mu_{Z\gamma_{ m EW}}$	$eta_{Z\gamma_{ m strong}}$	$eta_{W\gamma}$	
1.03 ± 0.25	1.02 ± 0.41	1.01 ± 0.20	

 5.2σ observed (5.1σ expected)

Synergy with searches

γZ is a background for Higgs to invisible and dark photon searches

Outline

1. Motivation & ATLAS

- Why rare EW processes
- ATLAS detector

2. EW $\gamma Z \rightarrow \ell \ell$

- Analysis strategy
- Separating strong & EW
- Results

3. EW $\gamma Z \rightarrow \nu \nu$

- Invisible final state
- Selections & background
- Interplay with searches
- 4. WWW: observation!
- 5. Effective theory interpretation

WWW process is sensitive to triple and quartic gauge boson self-interactions

Two final state categories with 2-3 leptonic W decays:

- 2l same sign (SS), suppresses W, Z, top -
- 3ℓ suppresses W, Z, top Train BDT using 11 input variables for each category
 - Example: $|m_{jj}-m_{\ell\ell}|$ to identify hadronic W

Separate from VBS WW using $m_{jj} < 160 \text{ GeV}$ & $|\Delta \eta_{jj}| < 1.5$

Observation of WWW

First ATLAS observation of WWW with 8.0 σ observed (5.4 σ exp.)

			Fit $\mu(WWW)$ Significance observed (expected)
			$e^{\pm}e^{\pm}$ 1.54 ± 0.76 2.2 (1.4) σ
			$e^{\pm}\mu^{\pm}$ 1.44 ± 0.39 4.1 (3.0) σ
			$\mu^{\pm}\mu^{\pm} = 2.23 \pm 0.46 = 5.6 \ (2.7) \ \sigma$
			2ℓ 1.75 ± 0.30 6.6 (4.0) σ
			3ℓ 1.32 ± 0.37 4.8 (3.8) σ
			$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Events	120 $ATLAS$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $VWWW(\mu=1.61)$ WZ $Non-prompt$ WZ $Other$ $Uncertainty$ $Pre-Fit Bkgd.$	Events	40 ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^1$ $SR 3\ell$ 70 25 25 20 15 10 40 ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^1$ $\sqrt{s} = 3\ell$ 3ℓ 3ℓ 3ℓ 3ℓ 3ℓ 20 10
Data / Pred.	$\begin{array}{c} 20 \\ 0 \\ 0 \\ 1.4 \\ 1.2 \\ 1 \\ 0.8 \\ 0.6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Data / Pred.	10 5 6 1.4 1.2 1.4 1.4 1.2 1.4 1.4 1.4 1.2 1.4 1.4 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
	BDT output		BDT output

Sensitive to Non-SM physics in MET distribution arXiv: 2011.09551

Outline

1. Motivation & ATLAS

- Why rare EW processes
- ATLAS detector

2. EW $\gamma Z \rightarrow \ell \ell$

- Analysis strategy
- Separating strong & EW
- Results

3. EW $\gamma Z \rightarrow \nu \nu$

- Invisible final state
- Selections & background
- Interplay with searches
- 4. WWW: observation!
- 5. Effective theory interpretation

Effective theory Results

Example of 1D profiles of Wilson coefficients

• Parameter value of 0 corresponds to SM

Modified basis, described in <u>ATL-PHYS-PUB-2019-042</u>

Conclusions

- 1. EW $\gamma Z \rightarrow \ell \ell$
- 2. EW $\gamma Z \rightarrow \nu \nu$: <u>observation!</u>
- 3. WWW: <u>observation!</u>

Why measure EW processes

- Window into rare SM couplings
- Important for backgrounds in searches
- Synergy with searches for non-SM physics

Effective theory: general method to interpret ATLAS data to identify hints of non-SM operators

Backup

Trigger: HLT

Single lepton triggers use approximately 1/4th the HLT rate

- Thresholds at ~27 GeV offline (though not 100% efficient, see backup)
- General purpose trigger for all kinds of physics (W, Z, H, exotics...)
- Offline thresholds for other objects differ on rate and use case

Algorithm	Offline thr.		
μ	27		
e	27		
Jet	420		
4 Jet	125		
4 Jets, 2 b-tags	65		
MET	~150		
τ	170		
$\tau \tau + \Delta R < 2.5$	40 (30)		
γ	140		
γγ	25		

*Total rate does not add equal to sum of contributions, because of overlaps

Selections

Lepton	$p_{\rm T}^{\ell} > 20, 30 (\text{leading}) \text{ GeV}, \eta_{\ell} < 2.47$
	$N_\ell \ge 2$
Photon	$E_{\rm T}^{\gamma} > 25 { m GeV}, $
	$E_{\rm T}^{cone20} < 0.07 E_{\rm T}^{\gamma}$
	$\Delta R(\ell,\gamma) > 0.4$
Jet	$p_{\rm T}^{jet} > 50 { m GeV}, \ y_{jet} < 4.4$
	$ \Delta y > 1.0$
	$m_{ij} > 150 \text{ GeV}$
	remove jets if $\Delta R(\gamma, j) < 0.4$ or if $\Delta R(\ell, j) < 0.3$
Event	$m_{\ell\ell} > 40 {\rm ~GeV}$
	$m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \mathrm{GeV}$
	$\zeta(\ell\ell\gamma) < 0.4$
	$N_{jets}^{gap} = 0$

Results

Sample	SR	CR	
$N_{EW-Z\gamma jj}$	300 ± 36	55 ± 7	
$N_{QCD-Z\gamma jj}$	987 ± 55	1352 ± 60	
$N_{t\bar{t}\gamma}$	72 ± 11	59 ± 9	
N_{WZ}	17 ± 3	14 ± 3	
N_{Z+jets}	85 ± 30	143 ± 43	
Total	1461 ± 38	1624 ± 40	
Nobs	1461	1624	
	•		

Selections

Variable	SR	$W^{\gamma}_{\mu u}$ CR	$W_{e\nu}^{\gamma}$ CR	$Z_{\text{Rev.Cen.}}^{\gamma}$ CR	Fake-e CR	Low- $E_{\rm T}^{\rm miss}$ VR
$p_{\mathrm{T}}(j_1)$ [GeV]	> 60					
$p_{\mathrm{T}}(j_2)$ [GeV]	> 50					
$p_{\rm T}(j_{>2})$ [GeV]	> 25					
$N_{\rm jet}$	2,3					
N _{b-jet}				< 2		
$\Delta \phi_{ m jj}$	< 2.5 [2.0]					
$ \Delta \eta_{ m jj} $	> 3.0					
$\eta(j_1) \times \eta(j_2)$	< 0					
C_3				< 0.7		
m _{jj} [TeV]			> 0.	.25		0.25-1.0
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	—	> 80	> 150	< 80	110–150
$E_{\rm T}^{\rm miss, lep-rm}$ [GeV]	_	> 150	> 150	_	> 150	110–150
$E_{\rm T}^{\rm jets,no-jvt}$ [GeV]	> 130 > 10		> 100			
$\Delta \phi(j_i, \vec{E}_{T}^{miss, lep-rm})$				> 1.0		
N_{γ}				1		
$p_{\rm T}(\gamma)$ [GeV]	> 15, < 110 [> 15, < max(110, 0.733 × $m_{\rm T}$)]					
C_{γ}	> 0.4	> 0.4	> 0.4	< 0.4	> 0.4	> 0.4
$\Delta \phi(\gamma, \vec{E}_{\mathrm{T}}^{\mathrm{miss,lep-rm}})$	> 1.8 [-]					
N_ℓ	0	$1 \ \mu$	1 e	0	1 <i>e</i>	0
$p_{\rm T}(\ell)$ [GeV]	_	> 30	> 30	—	> 30	_

Estimating W&Z

Determine background normalization from simultaneous fit of CR

Features of VBF

<u>Eur. Phys. J. C 82 (2022) 105</u> Elboli, Zeppenfeld <u>Phys. Lett. B 495</u> <u>147-154 (2000)</u>

Input distribution

arXiv: <u>2201.13045</u>

arXiv: 2201.13045

New physics in WWW

36