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Opportunities & Challenges of the HL-LHC

HL-LHC runs expected to deliver 3000 fb™ of data

> 10x more than LHC runs 1-3

> Search for rare processes & constrain SM particle properties
> Plan to start in 2029

*pileup = # proton-proton collisions per bunch crossing

~4x increase in pileup* — New Simulated event at 140 PU (102 Vertices)
handles needed to control trigger
rates

Will add tracking
information to Level-1!




Tracking Information in L1 Trigger
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Tracker Geometry
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Necessary for track finding at 40 MHz!




Track Finding Overview

» Track Finding Strategy — Road Search*
> Naturally pipelined
> Modest system size
> Simple software emulation

 Algorithm description:
1. Stub pairs form ‘Tracklets’
2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

» Classic road search style algorithm
+ Challenge is to implement on FPGA!
(FPGA: Field Programmable Gate Array)
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Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel
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https://arxiv.org/pdf/1910.09970.pdf
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Track Finding Overview

Track Finding Strategy — Road Search*
> Naturally pipelined

> Modest system size

> Simple software emulation

Algorithm description:
1. Stub pairs form ‘Tracklets’

2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

Classic road search style algorithm
+ Challenge is to implement on FPGA!

(FPGA: Field Programmable Gate Array)

‘Apollo’ platform
being built, details in
this paper and talk
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https://arxiv.org/pdf/1910.09970.pdf
https://arxiv.org/abs/2112.01556
https://indico.cern.ch/event/1019078/contributions/4444387/

Reducing Combinatorics — Virtual Modules

pr > 2 GeV

* Many stubs/BX — cannot consider all stub pairs
pr < 2 GeV

« Tracker divided into ¢ slices. Only consider
slice pairs that produce tracks = 2 GeV

> Exploit FPGA resources by processing pairs
in parallel outer

> Greatly reduces total stub pairs considered
inner
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Removing Duplicate Tracks

* Tracklets formed in several layers/disks
combinations (‘seeds’)

> Ensures good efficiency over n
> Different seeds can find same track

> Two nearby stubs can make similar
tracks

* Want to use Kalman Filter to obtain best
possible tracks

> Merge stub lists of duplicate candidates

> More thorough exploration of track
possibilities by KF than removing a track

L J

11



Removing Duplicate Tracks

* Tracklets formed in several layers/disks
combinations (‘seeds’)

> Ensures good efficiency over n
> Different seeds can find same track

> Two nearby stubs can make similar
tracks

* Want to use Kalman Filter to obtain best
possible tracks

> Merge stub lists of duplicate candidates

> More thorough exploration of track
possibilities by KF than removing a track

L J

12



Removing Duplicate Tracks

e Tracklets formed in several layers/disks 4 =y
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Track Fitting - Kalman Filter*

1. Take track from previous steps

2. Iteratively add stubs, updating track each
step

3. If > 2 stub per layer on track — calculate
multiple projections

4. Too many layers missed - track discarded

> KF selects best stubs & refines track
parameters

yll
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https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12019/pdf
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High Level Synthesis (HLS)

* Previous iterations written in Verilog — Steep learning curve

e Switch to HLS — Allows programmer to specify firmware logic in a high-level language (C++ for us).
> Faster & easier development of FW logic

 HLS is a useful tool, but has certain drawbacks
> HLS-specific syntax constraints
> More difficult to debug

+ Switching to HLS greatly simplified firmware development & maintenance!
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Algorithm Structure and Project Design VHDL

.~ Top-Level
* 9 processing steps (red), 14 block RAMs (blue) VHDL InputRouter
> Each step is its own HLS function Module InputStub HLS
> Independently developed A T Top-Levels

* All steps successfully implemented & tested Allstub VMStubs(TE/ME)
> CIl ensures continuous validation of modules

- TrackletEngine
during development

StubPair

e Many instantiations of HLS blocks wired up in
top-level VHDL file

+ Current goal is to realize full end-to-end
chain for narrow slice in ¢

TrackletCalculator

TrackletProjection TrackletParameter

ProjectionRouter

VMProjection AllProjectiol

MatchEngine

CandidateMatch

MatchCalculator g

FullMatch
PurgeDuplicates §
MergeTrack
Kalman Filter FitTrack




Near-term Goal - “Skinny” Chain

e Full forward & backward expansion
around a single module

> ~4% of the full project

> Allows full demonstration of track
finding chain

* Currently being tested in Modelsim over
1k tt+200 pileup events
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Summary

Tracking information at L1 helps to maintain physics performance under high pileup

Algorithm combines road search style track finding with Kalman Filter fit
> Firmware developed in combination of VHDL and HLS

On track to deliver tracking for CMS L1 for HL-LHC
> All HLS module successfully synthesized & tested
> Full end-to-end chain written & being tested

Next step — scale up to full tracker
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BACKUP
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Tracks

Tracks

Efficiency & Resolution
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Full System Architecture
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