Track Reconstruction at Level-1 In
CMS for HL-LHC

Derek Cranshaw (Cornell University)
On behalf of the CMS Collaboration

Lake Louise Winter Institute
February 2022

Outline

Motivation for L1 Track Finding
Algorithm Description

Strategy for Firmware Implementation
Current Status

Summary

Opportunities & Challenges of the HL-LHC

HL-LHC runs expected to deliver 3000 fb™ of data

> 10x more than LHC runs 1-3

> Search for rare processes & constrain SM particle properties
> Plan to start in 2029

*pileup = # proton-proton collisions per bunch crossing

~4x increase in pileup* — New Simulated event at 140 PU (102 Vertices)
handles needed to control trigger
rates

Will add tracking
information to Level-1!

Tracking Information in L1 Trigger

* Motivation for L1 Track Finding o S Phase Z Simulation 14Tev
. Improves pTu’ pTe, MET, and vertex E- 5:_ | 1 Thresholds for a rate of 28 kHz (g)
reconstruction, keeping thresholds low ; N
without driving up trigger rate g 52_ With L1 Tracks
* Very challenging! g > _
> Bunch Crossings (BX) every 25 ns 4:_ W't,hOUt L1 Tracks
» ~15k correlated p_ module hit pairs 31_ '"'
(‘stubs’) with p_ > 2 GeV - E
+ ~200 tracks to reconstruct per BX 2F '5'{;%'9
> 4 ps budgeted for track finding . tt—bbzvag
1:_ ; n.» M+
0_ [i . e

. i i T == =
20 40 60 80 100 120 140
Lepton P, [GeV]

Tracker Geometry

0.0 0.2 0.4 0.6 0.8
/ 1.6
1200 —
- b || || . Red & Blue:
1000 [— I | I I [- Outer Tracker
= |||| |||| |||| |||| |||| 20 (Usedin L1)
= |||| |||| ” ” ” — 2
600 I I i I i 24
e IR R RN N YN N N ”:: ”” pl pl I
WL SSSAN N NN N N N il ”“”:: ”:: B 26 Green & Orange:
200—55::\\\\\\\\\\ NN \\\\\\H”IIH ::20 Inner Tracker
o:*—-hb‘i'i‘h. I . I R II _ II| L II L !] n (NOt used in Ll)
0 B 500 1000 , [;5"?]0 2000 2500
* Cylindrical shape - 6 ‘barrel’ layers, 5 ‘endcap’ disks per side
* L1 Tracking out to |n|<2.4
. , “stub”’ pass fail
- ‘p, modules’ - Two closely spaced sensors, T
correlates hits on common front-end ASIC -
: hits f | K y 14 mm OB
- Reject hits from low-p_ tracks t : R
* Reduced data by ~10x-20x x o
. <100 um (a) 5
Necessary for track finding at 40 MHz!

Track Finding Overview

» Track Finding Strategy — Road Search*
> Naturally pipelined
> Modest system size
> Simple software emulation

 Algorithm description:
1. Stub pairs form ‘Tracklets’
2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

» Classic road search style algorithm
+ Challenge is to implement on FPGA!
(FPGA: Field Programmable Gate Array)

y

A

SN
AN
— \.&
SN
N :\\ \\
\\;j; ""’“\ \\
- %) M

|

Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel

6
*Detailed in Tracklet Paper

https://arxiv.org/pdf/1910.09970.pdf

Track Finding Overview

» Track Finding Strategy — Road Search*
> Naturally pipelined
> Modest system size
> Simple software emulation

 Algorithm description:
1. Stub pairs form ‘Tracklets’
2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

» Classic road search style algorithm
+ Challenge is to implement on FPGA!
(FPGA: Field Programmable Gate Array)

y

A

~/ NN N
~ X \ \

>

Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel

7
*Detailed in Tracklet Paper

https://arxiv.org/pdf/1910.09970.pdf

Track Finding Overview

» Track Finding Strategy — Road Search*
> Naturally pipelined
> Modest system size
> Simple software emulation

 Algorithm description:
1. Stub pairs form ‘Tracklets’
2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

» Classic road search style algorithm
+ Challenge is to implement on FPGA!
(FPGA: Field Programmable Gate Array)

y

A

N
N
— \\ \\\
* ﬁ\
"\’S:jj;;‘ \\ \\ \\
‘-.?fjjg X\ fi \
< X\ \

%

>

Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel

8
*Detailed in Tracklet Paper

https://arxiv.org/pdf/1910.09970.pdf

Track Finding Overview

Track Finding Strategy — Road Search*
> Naturally pipelined

> Modest system size

> Simple software emulation

Algorithm description:
1. Stub pairs form ‘Tracklets’

2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

Classic road search style algorithm
+ Challenge is to implement on FPGA!

(FPGA: Field Programmable Gate Array)

‘Apollo’ platform
being built, details in
this paper and talk

y

A

~N
N
"'"-\ | ‘5:}3\
N \\‘_ \\\
S SN

>

Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel

9
*Detailed in Tracklet Paper

https://arxiv.org/pdf/1910.09970.pdf
https://arxiv.org/abs/2112.01556
https://indico.cern.ch/event/1019078/contributions/4444387/

Reducing Combinatorics — Virtual Modules

pr > 2 GeV

* Many stubs/BX — cannot consider all stub pairs
pr < 2 GeV

« Tracker divided into ¢ slices. Only consider
slice pairs that produce tracks = 2 GeV

> Exploit FPGA resources by processing pairs
in parallel outer

> Greatly reduces total stub pairs considered
inner

10

Removing Duplicate Tracks

* Tracklets formed in several layers/disks
combinations (‘seeds’)

> Ensures good efficiency over n
> Different seeds can find same track

> Two nearby stubs can make similar
tracks

* Want to use Kalman Filter to obtain best
possible tracks

> Merge stub lists of duplicate candidates

> More thorough exploration of track
possibilities by KF than removing a track

L J

11

Removing Duplicate Tracks

* Tracklets formed in several layers/disks
combinations (‘seeds’)

> Ensures good efficiency over n
> Different seeds can find same track

> Two nearby stubs can make similar
tracks

* Want to use Kalman Filter to obtain best
possible tracks

> Merge stub lists of duplicate candidates

> More thorough exploration of track
possibilities by KF than removing a track

L J

12

Removing Duplicate Tracks

e Tracklets formed in several layers/disks 4 =y
combinations (‘seeds’) N
> Ensures good efficiency over n """"-\‘ X;g\
> Different seeds can find same track \
> Two nearby stubs can make similar s~ \ \
tracks ~ }K\ \
~ \
* Want to use Kalman Filter to obtain best % \ \\

ossible tracks -
P . | | Ky \ X
> Merge stub lists of duplicate candidates ~

> More thorough exploration of track
possibilities by KF than removing a track \

L J

13

Track Fitting - Kalman Filter*

1. Take track from previous steps

2. Iteratively add stubs, updating track each
step

3. If > 2 stub per layer on track — calculate
multiple projections

4. Too many layers missed - track discarded

> KF selects best stubs & refines track
parameters

yll

14
*Detailed in HT-KF Paper

https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12019/pdf

Track Fitting - Kalman Filter*

1. Take track from previous steps

2. Iteratively add stubs, updating track each
step

3. If > 2 stub per layer on track — calculate
multiple projections

4. Too many layers missed - track discarded

> KF selects best stubs & refines track
parameters

yll

15
*Detailed in HT-KF Paper

https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12019/pdf

Track Fitting - Kalman Filter*

1. Take track from previous steps

2. Iteratively add stubs, updating track each
step

3. If > 2 stub per layer on track — calculate
multiple projections

4. Too many layers missed - track discarded

> KF selects best stubs & refines track
parameters

yll

16
*Detailed in HT-KF Paper

https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12019/pdf

High Level Synthesis (HLS)

* Previous iterations written in Verilog — Steep learning curve

e Switch to HLS — Allows programmer to specify firmware logic in a high-level language (C++ for us).
> Faster & easier development of FW logic

 HLS is a useful tool, but has certain drawbacks
> HLS-specific syntax constraints
> More difficult to debug

+ Switching to HLS greatly simplified firmware development & maintenance!

17

Algorithm Structure and Project Design VHDL

.~ Top-Level
* 9 processing steps (red), 14 block RAMs (blue) VHDL InputRouter
> Each step is its own HLS function Module InputStub HLS
> Independently developed A T Top-Levels

* All steps successfully implemented & tested Allstub VMStubs(TE/ME)
> CIl ensures continuous validation of modules

- TrackletEngine
during development

StubPair

e Many instantiations of HLS blocks wired up in
top-level VHDL file

+ Current goal is to realize full end-to-end
chain for narrow slice in ¢

TrackletCalculator

TrackletProjection TrackletParameter

ProjectionRouter

VMProjection AllProjectiol

MatchEngine

CandidateMatch

MatchCalculator g

FullMatch
PurgeDuplicates §
MergeTrack
Kalman Filter FitTrack

Near-term Goal - “Skinny” Chain

e Full forward & backward expansion
around a single module

> ~4% of the full project

> Allows full demonstration of track
finding chain

* Currently being tested in Modelsim over
1k tt+200 pileup events

19

Summary

Tracking information at L1 helps to maintain physics performance under high pileup

Algorithm combines road search style track finding with Kalman Filter fit
> Firmware developed in combination of VHDL and HLS

On track to deliver tracking for CMS L1 for HL-LHC
> All HLS module successfully synthesized & tested
> Full end-to-end chain written & being tested

Next step — scale up to full tracker

20

BACKUP

21

Tracks

Tracks

Efficiency & Resolution

CMS Preliminary Simulation, HL-LHC CMS Preliminary Simulation, HL-LHC
140|— resin o £
" Integer emulation E
120 =
100f
80f CMS Phase-2 Simulation 14 TeV
L >.‘ UL I LU I L I | I LB L | rrnra | UL | LI I L I | | LB L L | LB L
60f = d
) e - "'—.—ﬁ-_%ww o
40- = (=S =
g ‘© -]
20_ g 08‘_ .. __‘
‘e B Y T ¥R FUNL. FUWH SWH PUWE 0 | ﬁ ~ .
Q986420216 8 10 -40-30-20-10 0 10 20 30 40 &]
Tracklet G(pT)jpT [/o] Tracklet G(ﬂ) [1 0'3] ~ e i i
CMS Preliminary Simulation, HL-LHC CMS Preliminary Simulation, HL-LHC : :
— :I: % 0.4} OSSR]
300|— o crion © [Tracks in tt+PU=200 events]
- - R 2
250 0.2} 4P >2GeV]
i - & p.> 8 GeV —
200f "]
: Ll 1 1 I | I - I L1 1 1 I L1l | Ll 1 1 I Ll 11 | L1 | I I | I L1 | | Ll 1l
1501 25 2 15 1 05 0 05 1 156 2 25
100k Particle n
50¢
TSI A PRYTL PRI OTRT
%32 4 12 3 4 2 22

Tracklet c;(d)n) [mrad] Tracklet G(zﬁ) [em]

Full System Architecture

E Detector nonant 1:
ol z+, z- (24 DTCs) i v
1000 -

Time-multiplexed
processing slice

500

. Processor
s, nonant
=500 -— ----

Dntat:t_ur N time slices per M regions

nonant e.g. 18 time slices x 9 regions
B G Tk PR |
U ¢ S0 ‘E'ﬁm] Detector nonant2: -
z+,2- (24 DTCs) *\

*Slide by L. Skinnari 23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

