

Track Reconstruction at Level-1 in CMS for HL-LHC

Derek Cranshaw (Cornell University)

On behalf of the CMS Collaboration

Lake Louise Winter Institute February 2022

Outline

- Motivation for L1 Track Finding
- Algorithm Description
- Strategy for Firmware Implementation
- Current Status
- Summary

Opportunities & Challenges of the HL-LHC

- HL-LHC runs expected to deliver 3000 fb⁻¹ of data
 - > 10x more than LHC runs 1-3
 - Search for rare processes & constrain SM particle properties
 - Plan to start in 2029

 ~4x increase in pileup* – New handles needed to control trigger rates

→ Will add tracking information to Level-1!

*pileup = # proton-proton collisions per bunch crossing

Tracking Information in L1 Trigger

- Motivation for L1 Track Finding
 - Improves p_T^μ, p_T^e, MET, and vertex reconstruction, keeping thresholds low without driving up trigger rate
- Very challenging!
 - Bunch Crossings (BX) every 25 ns
 - → ~15k correlated p_{T} module hit pairs ('stubs') with p_{T} > 2 GeV
 - ~200 tracks to reconstruct per BX
 - 4 μs budgeted for track finding

Tracker Geometry

Red & Blue: Outer Tracker (Used in L1)

Green & Orange: Inner Tracker (Not used in L1)

- Cylindrical shape 6 'barrel' layers, 5 'endcap' disks per side
- L1 Tracking out to $|\eta|$ <2.4
- ' p_T modules' Two closely spaced sensors, correlates hits on common front-end ASIC
 - Reject hits from low-p_T tracks
 - Reduced data by ~10x-20x
 Necessary for track finding at 40 MHz!

- Track Finding Strategy Road Search*
 - Naturally pipelined
 - Modest system size
 - Simple software emulation
- Algorithm description:
 - 1. Stub pairs form 'Tracklets'
 - 2. Tracklet projects to other layers
 - 3. Match stubs to projections
 - 4. Refine track using Kalman Filter
- Classic road search style algorithm
 - Challenge is to implement on FPGA!

(FPGA: Field Programmable Gate Array)

- Track Finding Strategy Road Search*
 - Naturally pipelined
 - Modest system size
 - Simple software emulation
- Algorithm description:
 - 1. Stub pairs form 'Tracklets'
 - 2. Tracklet projects to other layers
 - 3. Match stubs to projections
 - 4. Refine track using Kalman Filter
- Classic road search style algorithm
 - Challenge is to implement on FPGA!

(FPGA: Field Programmable Gate Array)

Example of track formed from stubs in layers 1 & 2 (L1L2 "seed") with projections in the barrel

- Track Finding Strategy Road Search*
 - Naturally pipelined
 - Modest system size
 - Simple software emulation
- Algorithm description:
 - 1. Stub pairs form 'Tracklets'
 - 2. Tracklet projects to other layers
 - 3. Match stubs to projections
 - 4. Refine track using Kalman Filter
- Classic road search style algorithm
 - Challenge is to implement on FPGA!

(FPGA: Field Programmable Gate Array)

Example of track formed from stubs in layers 1 & 2 (L1L2 "seed") with projections in the barrel

- Track Finding Strategy Road Search*
 - Naturally pipelined
 - Modest system size
 - Simple software emulation
- Algorithm description:
 - 1. Stub pairs form 'Tracklets'
 - 2. Tracklet projects to other layers
 - 3. Match stubs to projections
 - 4. Refine track using Kalman Filter
- Classic road search style algorithm
 - Challenge is to implement on FPGA!

(FPGA: Field Programmable Gate Array)

'Apollo' platform being built, details in this paper and talk

Example of track formed from stubs in layers 1 & 2 (L1L2 "seed") with projections in the barrel

Reducing Combinatorics – Virtual Modules

- Many stubs/BX cannot consider all stub pairs
- Tracker divided into φ slices. Only consider slice pairs that produce tracks ≥ 2 GeV
 - Exploit FPGA resources by processing pairs in parallel
 - Greatly reduces total stub pairs considered

Removing Duplicate Tracks

- Tracklets formed in several layers/disks combinations ('seeds')
 - Ensures good efficiency over η
 - Different seeds can find same track
 - Two nearby stubs can make similar tracks
- Want to use Kalman Filter to obtain best possible tracks
 - Merge stub lists of duplicate candidates
 - More thorough exploration of track possibilities by KF than removing a track

Removing Duplicate Tracks

- Tracklets formed in several layers/disks combinations ('seeds')
 - Ensures good efficiency over η
 - Different seeds can find same track
 - Two nearby stubs can make similar tracks
- Want to use Kalman Filter to obtain best possible tracks
 - Merge stub lists of duplicate candidates
 - More thorough exploration of track possibilities by KF than removing a track

Removing Duplicate Tracks

- Tracklets formed in several layers/disks combinations ('seeds')
 - Ensures good efficiency over η
 - Different seeds can find same track
 - Two nearby stubs can make similar tracks
- Want to use Kalman Filter to obtain best possible tracks
 - Merge stub lists of duplicate candidates
 - More thorough exploration of track possibilities by KF than removing a track

Track Fitting - Kalman Filter*

- 1. Take track from previous steps
- 2. Iteratively add stubs, updating track each step
- 3. If ≥ 2 stub per layer on track → calculate multiple projections
- 4. Too many layers missed → track discarded
 - KF selects best stubs & refines track parameters

Track Fitting - Kalman Filter*

- 1. Take track from previous steps
- 2. Iteratively add stubs, updating track each step
- 3. If ≥ 2 stub per layer on track → calculate multiple projections
- 4. Too many layers missed → track discarded
 - KF selects best stubs & refines track parameters

Track Fitting - Kalman Filter*

- 1. Take track from previous steps
- 2. Iteratively add stubs, updating track each step
- 3. If ≥ 2 stub per layer on track → calculate multiple projections
- 4. Too many layers missed → track discarded
 - KF selects best stubs & refines track parameters

High Level Synthesis (HLS)

- Previous iterations written in Verilog Steep learning curve
- Switch to HLS Allows programmer to specify firmware logic in a high-level language (C++ for us).
 - Faster & easier development of FW logic
- HLS is a useful tool, but has certain drawbacks
 - HLS-specific syntax constraints
 - More difficult to debug
 - Switching to HLS greatly simplified firmware development & maintenance!

Algorithm Structure and Project Design

VHDI Top-Level

- 9 processing steps (red), 14 block RAMs (blue)
 - Each step is its own HLS function
 - Independently developed
- All steps successfully implemented & tested
 - CI ensures continuous validation of modules. during development
- Many instantiations of HLS blocks wired up in top-level VHDL file
 - Current goal is to realize full end-to-end chain for narrow slice in ϕ

Near-term Goal - "Skinny" Chain

- Full forward & backward expansion around a single module
 - → ~4% of the full project
 - Allows full demonstration of track finding chain
- Currently being tested in Modelsim over 1k tt+200 pileup events

Summary

- Tracking information at L1 helps to maintain physics performance under high pileup
- Algorithm combines road search style track finding with Kalman Filter fit
 - Firmware developed in combination of VHDL and HLS
- On track to deliver tracking for CMS L1 for HL-LHC
 - All HLS module successfully synthesized & tested
 - Full end-to-end chain written & being tested
- Next step scale up to full tracker

BACKUP

Efficiency & Resolution

Tracklet σ(z) [cm]

Tracklet $\sigma(\phi_0)$ [mrad]

Full System Architecture

