

Track Reconstruction at Level-1 in
CMS for HL-LHC

Derek Cranshaw (Cornell University)
On behalf of the CMS Collaboration

Lake Louise Winter Institute
February 2022

2

Outline

● Motivation for L1 Track Finding

● Algorithm Description

● Strategy for Firmware Implementation

● Current Status

● Summary

3

Opportunities & Challenges of the HL-LHC

● ~4x increase in pileup* ‒ New
handles needed to control trigger
rates

● HL-LHC runs expected to deliver 3000 fb-1 of data

➢ 10x more than LHC runs 1-3

➢ Search for rare processes & constrain SM particle properties

➢ Plan to start in 2029

Will add tracking
information to Level-1!

*pileup = # proton-proton collisions per bunch crossing

4

Tracking Information in L1 Trigger

● Motivation for L1 Track Finding
➢ Improves p

T

μ, p
T

e, MET, and vertex

reconstruction, keeping thresholds low
without driving up trigger rate

● Very challenging!
➢ Bunch Crossings (BX) every 25 ns
➢ ~15k correlated p

T
 module hit pairs

(‘stubs’) with p
T
 > 2 GeV

 ~200 tracks to reconstruct per BX
➢ 4 μs budgeted for track finding

5

Tracker Geometry

● Cylindrical shape - 6 ‘barrel’ layers, 5 ‘endcap’ disks per side
● L1 Tracking out to |η|<2.4

Red & Blue:
Outer Tracker
(Used in L1)

Green & Orange:
Inner Tracker
(Not used in L1)

● ‘p
T
 modules’ - Two closely spaced sensors,

correlates hits on common front-end ASIC
● Reject hits from low-p

T
 tracks

● Reduced data by ~10x-20x
Necessary for track finding at 40 MHz!

B⃗

6

Track Finding Overview
● Track Finding Strategy – Road Search*

➢ Naturally pipelined
➢ Modest system size
➢ Simple software emulation

● Algorithm description:
1. Stub pairs form ‘Tracklets’
2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

● Classic road search style algorithm
 Challenge is to implement on FPGA!

Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel

(FPGA: Field Programmable Gate Array)

*Detailed in Tracklet Paper

https://arxiv.org/pdf/1910.09970.pdf

7

Track Finding Overview
● Track Finding Strategy – Road Search*

➢ Naturally pipelined
➢ Modest system size
➢ Simple software emulation

● Algorithm description:
1. Stub pairs form ‘Tracklets’
2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

● Classic road search style algorithm
 Challenge is to implement on FPGA!

Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel

(FPGA: Field Programmable Gate Array)

*Detailed in Tracklet Paper

https://arxiv.org/pdf/1910.09970.pdf

8

Track Finding Overview
● Track Finding Strategy – Road Search*

➢ Naturally pipelined
➢ Modest system size
➢ Simple software emulation

● Algorithm description:
1. Stub pairs form ‘Tracklets’
2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

● Classic road search style algorithm
 Challenge is to implement on FPGA!

Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel

(FPGA: Field Programmable Gate Array)

*Detailed in Tracklet Paper

https://arxiv.org/pdf/1910.09970.pdf

9

Track Finding Overview
● Track Finding Strategy – Road Search*

➢ Naturally pipelined
➢ Modest system size
➢ Simple software emulation

● Algorithm description:
1. Stub pairs form ‘Tracklets’
2. Tracklet projects to other layers
3. Match stubs to projections
4. Refine track using Kalman Filter

● Classic road search style algorithm
 Challenge is to implement on FPGA!

Example of track formed from stubs in layers 1 & 2
(L1L2 “seed”) with projections in the barrel

(FPGA: Field Programmable Gate Array)

*Detailed in Tracklet Paper

‘Apollo’ platform
being built, details in
this paper and talk

https://arxiv.org/pdf/1910.09970.pdf
https://arxiv.org/abs/2112.01556
https://indico.cern.ch/event/1019078/contributions/4444387/

10

Reducing Combinatorics – Virtual Modules

● Many stubs/BX – cannot consider all stub pairs

● Tracker divided into ɸ slices. Only consider
slice pairs that produce tracks ≥ 2 GeV

➢ Exploit FPGA resources by processing pairs
in parallel

➢ Greatly reduces total stub pairs considered

11

Removing Duplicate Tracks

● Tracklets formed in several layers/disks
combinations (‘seeds’)
➢ Ensures good efficiency over η
➢ Different seeds can find same track
➢ Two nearby stubs can make similar

tracks

● Want to use Kalman Filter to obtain best
possible tracks
➢ Merge stub lists of duplicate candidates
➢ More thorough exploration of track

possibilities by KF than removing a track

12

Removing Duplicate Tracks

● Tracklets formed in several layers/disks
combinations (‘seeds’)
➢ Ensures good efficiency over η
➢ Different seeds can find same track
➢ Two nearby stubs can make similar

tracks

● Want to use Kalman Filter to obtain best
possible tracks
➢ Merge stub lists of duplicate candidates
➢ More thorough exploration of track

possibilities by KF than removing a track

13

Removing Duplicate Tracks

● Tracklets formed in several layers/disks
combinations (‘seeds’)
➢ Ensures good efficiency over η
➢ Different seeds can find same track
➢ Two nearby stubs can make similar

tracks

● Want to use Kalman Filter to obtain best
possible tracks
➢ Merge stub lists of duplicate candidates
➢ More thorough exploration of track

possibilities by KF than removing a track

14

Track Fitting - Kalman Filter*

1. Take track from previous steps

2. Iteratively add stubs, updating track each
step

3. If ≥ 2 stub per layer on track → calculate
multiple projections

4. Too many layers missed → track discarded

➢ KF selects best stubs & refines track
parameters

*Detailed in HT-KF Paper

https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12019/pdf

15

Track Fitting - Kalman Filter*

1. Take track from previous steps

2. Iteratively add stubs, updating track each
step

3. If ≥ 2 stub per layer on track → calculate
multiple projections

4. Too many layers missed → track discarded

➢ KF selects best stubs & refines track
parameters

*Detailed in HT-KF Paper

https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12019/pdf

16

Track Fitting - Kalman Filter*

1. Take track from previous steps

2. Iteratively add stubs, updating track each
step

3. If ≥ 2 stub per layer on track → calculate
multiple projections

4. Too many layers missed → track discarded

➢ KF selects best stubs & refines track
parameters

*Detailed in HT-KF Paper

https://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12019/pdf

17

High Level Synthesis (HLS)

● Previous iterations written in Verilog – Steep learning curve

● Switch to HLS – Allows programmer to specify firmware logic in a high-level language (C++ for us).
➢ Faster & easier development of FW logic

● HLS is a useful tool, but has certain drawbacks
➢ HLS-specific syntax constraints
➢ More difficult to debug

 Switching to HLS greatly simplified firmware development & maintenance!

18

Algorithm Structure and Project Design

● 9 processing steps (red), 14 block RAMs (blue)
➢ Each step is its own HLS function
➢ Independently developed

● All steps successfully implemented & tested
➢ CI ensures continuous validation of modules

during development

● Many instantiations of HLS blocks wired up in
top-level VHDL file

 Current goal is to realize full end-to-end
chain for narrow slice in ɸ

HLS
Top-Levels

VHDL
Module

VHDL
Top-Level

19

Near-term Goal - “Skinny” Chain

● Full forward & backward expansion
around a single module

➢ ~4% of the full project

➢ Allows full demonstration of track
finding chain

● Currently being tested in Modelsim over
1k tt+200 pileup events

20

Summary

● Tracking information at L1 helps to maintain physics performance under high pileup

● Algorithm combines road search style track finding with Kalman Filter fit
➢ Firmware developed in combination of VHDL and HLS

● On track to deliver tracking for CMS L1 for HL-LHC
➢ All HLS module successfully synthesized & tested
➢ Full end-to-end chain written & being tested

● Next step – scale up to full tracker

21

BACKUP

22

Efficiency & Resolution

23

Full System Architecture

*Slide by L. Skinnari

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

