

Measurements of top-quark cross sections and properties with the ATLAS detector at the LHC

Jacob Kempster, on behalf of the ATLAS Collaboration

UNIVERSITY^{OF} BIRMINGHAM

21 February 2022 Lake Louise Winter Institute jacob.julian.kempster@cern.ch

Top quark physics

- The top quark is the **heaviest** known fundamental particle. Could it play a special role in electroweak symmetry breaking?
- The top quark has a very short lifetime, and is the only quark that decays before forming hadronic bound states
- This leads to many measureable properties that we can test from its decay products, probing the predictions of QCD
- Understanding tt
 t production is crucial for many searches for rare SM
 processes and physics beyond the SM

The LHC is a Top factory!

Top cross section

Top Quark Production Cross Section Measurements

Status: May 2021

Top cross section

This talk

ATLAS 139 fb^{-1}

- Boosted $t\bar{t}$ differential cross section
 - *l*+jets <u>ATLAS-CONF-2021-031</u>
 - All hadronic <u>ATLAS-CONF-2021-050</u>
- Charge Asymmetry <u>ATLAS-CONF-2019-026</u>
- Energy Asymmetry Accepted by EPJC (<u>arXiv</u>)
- Top-quark Polarisation <u>ATLAS-CONF-2021-027</u>

Boosted differential cross section $t\bar{t} \rightarrow l + jets$

Measurement of 1D, 2D differential cross sections of highly energy top quarks

- Comparison to various MC generators reweighted to match NNLO predictions at parton level
- Interpretation of measurements in EFT framework

- One W bosons decay hadronically, one decays leptonically - one lepton in the final state
- Large-R jets are 'top-tagged' (deep neural network, DNN)

Unfolding the differential cross sections to particle level in a fiducial phase space

Boosted differential cross section $t\bar{t} \rightarrow l + jets$

Jet Energy Scale (JES) can be a dominant uncertainty – special technique to deal with it using a **Jet Energy Scale Factor (JSF)**

Mass of Large-R jet depends on energy scale of sub-jets

Data and MC are assumed to have an overall difference in JES that may be described by a JSF.

Applying different values of JSF to MC small-R jets linearly modifies $\overline{m_{\rm top-jet}}$

Find value of JSF that matches the MC $\overline{m^{top_{had}}}$ distribution to data! Reduces overall jet uncertainties by a factor of 6

Boosted differential cross section $t\bar{t} \rightarrow l + jets$

Particle-level

Dominant Systs: b-tagging, Hadronisation modelling, Luminosity

$\sigma_{\text{particle,fiducial}}^{t\bar{t}} = 1.267 \pm 0.005(\text{stat.}) \pm 0.053(\text{syst.})\text{pb}$

Data falls slightly below prediction but within uncertainties

Measurement of 1D, 2D and 3D differential cross sections of highly energy top quarks

- Comparison to NLO MC predictions and NNLO QCD fixed order predictions
- Interpretation of measurements in EFT framework

- Both W bosons decay hadronically – no leptons in final state
- Large-R jets are 'top-tagged' (deep neural network, DNN)
- Sub-jets are b-tagged
- Unfolding the differential cross sections to particle and parton level in fiducial phase spaces

Dominant Systs: Top-tagging, Jet energy resolution, Radiation modelling

 $\sigma_{\text{particle,fiducial}}^{t\bar{t}} = 330 \pm 3(\text{stat.}) \pm 38(\text{syst.})\text{pb}$ $\sigma_{\text{parton,fiducial}}^{t\bar{t}} = 1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)pb}$

~20% lower than NLO+PS predictions normalised to NNLO total cross section

Most tension in radiationsensitive distributions (p_T^{tt}) , $\Delta \varphi_{t\bar{t}}$) – deficit of radiation at particle level

- Higher-order interferences between $q\bar{q}$ and qg create an asymmetric top production at the LHC
 - t is produced preferentially in direction of incoming q

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} \qquad \Delta|y| = |y_{t}| - |y_{\bar{t}}|$$

- Charge symmetric gg production dilutes asymmetry
- Several BSM models predict alterations to A_{C} , especially with variation as a function of $m_{t\bar{t}}$ and $\beta_{z,t\bar{t}}$

EFT coefficient useful for many models (axigluons, kaluza-klein, randall-sundrum)

Energy Asymmetry

$$A_{E}(\theta_{j}) \equiv \frac{\sigma_{t\bar{t}j}(\theta_{j}, \Delta E > 0) - \sigma_{t\bar{t}j}(\theta_{j}, \Delta E < 0)}{\sigma_{t\bar{t}j}(\theta_{j}, \Delta E > 0) + \sigma_{t\bar{t}j}(\theta_{j}, \Delta E < 0)} \equiv \frac{\sigma_{A}(\theta_{j})}{\sigma_{S}(\theta_{j})}$$

Asymmetry built in $t\bar{t}j$ production

- $\Delta E = E_t E_{\bar{t}}$
- θ_j = Jet scattering angle w.r.t incoming parton
- ΔE , θ_j defined in $t\bar{t}j$ rest frame
- Complementary measurement to charge (rapidity) asymmetry (CA) – probes new directions in SMEFT
- Potential for future combination with CA
- Many BSM models generate multiple fourquark operators simultaneously

Observing the top energy asymmetry at the LHC, S. Berge and S. Westhoff, Phys. Rev. D 95 014035 (2017)

Jacob Kempster - University of Birmingham 21 February 2022

Energy Asymmetry

- $t\bar{t}$ lepton+jets boosted topology •
- Fully Bayesian Unfolding to . particle level
- Binned in θ_i to increase sensitivity •

 $A_E(\theta_j)$ [10⁻²] ATLAS MadGraph5_aMC@NLO √s=13 TeV, 139 fb⁻¹ Data (stat only) Data (stat + syst) -2 -6 $\pi/4$ $\pi/2$ 3π/4 0 π θ_i [rad] C⁸_{tq} (TeV/Λ)² ATLAS best fit value $\sqrt{s} = 13 \, \text{TeV}, 139 \, \text{fb}^{-1}$ 68% CL 95% CL 68% CL expected 95% CL expected -4 -2 2 0 $C_{0q}^{18} \, (\text{TeV}/\Lambda)^2$

All asymmetry results agree with SM

Heavily dominated by statistical uncertainties predictions (MG5 aMC@NLO+Pythia8, NLO QCD + PS)

 $t\bar{t}$ produces unpolarised tops (parity conservation in QCD)

t-channel is dominant process for single-top production at LHC

Single-top production (V-A coupling in *Wtb* vertex) leads to tops with their spin completely aligned along (or against) the direction of the down-type quark (the 'spectator' quark), depending on the dominant or subdominant process and the production of a t or \bar{t}

14

- Top quark spin affects angular distributions of decay products
- MC Templates may be built between samples to represent any combination of valid polarisations $\{P_{x'}, P_{y'}, P_{z'}\}$
- Build angular distributions for the charged lepton with respect to each axis θ_{1i}

- Octant Variable Q defines all signal regions, broken by sign of $\cos heta_{l\hat{i}}$ and q_l
- CRs are introduced for $t\bar{t}$, W+jets backgrounds Profile likelihood fit over all regions simultaneously:
 - 6 Pols (polarisations split by top charge)
 - Normalisation Factors for CRs
 - Nuisance parameters associated to systematic uncertainties

Jacob Kempster - University of Birmingham 21 February 2022

16

Polarisations in agreement with SM predictions to 1σ

(Powheg+Pythia8)

- Uncertainties dominated by Jet Energy Resolution (JER)
- Polarisation depends on kinematic angles determined in top-quark rest frame
- JER is key to reconstruction of this frame

First order dim6 EFT operators that contribute to t-channel production:

• O_{tW} - Operator to focus on

C_{tW} most affects P_{x'}
C_{itW} most affects P_{y'}
(Non-zero value could imply CPV)

- Morphing technique used to interpolate between different Wilson Coefficient values
- Both coefficients fitted simultaneously (does not assume other is zero)

Jacob Kempster - University of Birmingham 21 February 2022

Summary

- There is a lot of very interesting physics being studied with respect to the properties of the top quark!
- Novel analysis techniques are being created to probe new and interesting properties at increasing precision – aiming to answer fundamental universal questions
 - Boosted top cross sections at this precisions are difficult to perform
 - Top pair inclusive cross sections fall lower than NLO QCD MC predictions but are consistent within uncertainties
 - Differential tensions greatest in distributions sensitive to radiation
 - Charge asymmetry finds strong evidence for SM effect, even with the large dilution from gluonic production
 - Energy Asymmetry in agreement with SM and useful for constraining blind directions in other fits
 - Top Polarisation in agreement with SM
 - Competitive EFT bounds on imaginary part of EFT operator

ATLAS Top Public Results LHC Top Working Group

BACKUP

Jacob Kempster - University of Birmingham 21 February 2022

Top EFT

Effective Field Theories parameterise the effect of new physics via higher-dimension operators:

Boosted differential cross sections

Why boosted and why differential?

Probing the QCD $t\bar{t}$ production processes in the TeV scale range – testing existing models

Theoretical Standard Model (SM) calculations present large uncertainties in the boosted regime – especially for top quark pair invariant mass $m_{t\bar{t}} > 2 \text{ TeV}$

Non-resonant deviations from the SM often appear at high top quark transverse momentum p_T and high $m_{t\bar{t}}$

 New physics may be parameterised in a model-independent way through Effective Field Theory (EFT)

Interesting experimental techniques!

Boosted differential cross section $t\bar{t} \rightarrow l + jets$

Events/GeV

Jacob Kempster - University of Birmingham 21 February 2022

Boosted differential cross section $t\bar{t} \rightarrow l + jets$

Largest background is 'multijet' (QCD)

- Estimated using 'ABCD' method
- Top-tagging (t) and b-tagging (b) status of two Large-R jets used as separating axes
- 16 regions defined

S

• Validation regions > 20% $t\bar{t}$ signal yield (KLMN).

Top-mistag rate of the Large-R jets are actually correlated, which makes traditional ABCD invalid – hence other regions are used to account for this

$$= \frac{J \times O}{A} \cdot \frac{D \times A}{B \times C} \cdot \frac{G \times A}{E \times I} \cdot \frac{F \times A}{E \times C} \cdot \frac{H \times A}{B \times A}$$

Usually then use regions JASO, such that $S = \frac{J \times 0}{\Lambda}$

(affects yield predictions by ~15%)

var

ONF

Jacob Kempster - University of Birmingham 21 February 2022

Energy Asymmetry

Top Polarisation

Top polarisation is sensitive to NP that affects the *tWb* vertex

First order dim6 EFT operators that contribute to t-channel production:

- $O_{\phi q}$ Affects cross-section only
- $O_{\phi q}$ Four-fermion operator, negligible effect on angular distributions

Top Polarisation

(stat.)

 (± 0.006)

 (± 0.005)

 $+1.005 \pm 0.016$ (± 0.004) $+0.01 \pm 0.18$ (± 0.02) -0.02 ± 0.20 (± 0.03) -0.029 ± 0.027 (± 0.011) -0.007 ± 0.051 (± 0.017) $+0.91 \pm 0.10$ (± 0.02) -0.79 ± 0.16 (± 0.03)

Uncertainties dominated by Jet Energy Resolution

- Polarisation depends on kinematic angles determined in top-quark rest frame
- JER is key to reconstruction of this frame

First order dim6 EFT operators that contribute to t-channel production:

 O_{tW} - Operator to focus on - $\longrightarrow C_{tW}$ most affects $P_{x'}$

 C_{itW} most affects $P_{v'}$

(Non-zero value could imply CPV)

ATLAS-CONF-2021-027

139 fb⁻¹

-0.5

-0.5

0.5

0

1.5

 \mathbf{C}_{tW}

Both coefficients fitted simultaneously (does not assume other is zero)

Result compatible with SM within 2σ

(MG5_aMC@NLO+Pythia8)

Measurement of Top Polarisation

<u>ATLAS-CONF-2021-027</u> $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

2021

Jacob Kempster - University of Birmingham 21 February 2022

- LO $t\bar{t}$ production is symmetric
- Higher-order interferences between $q\bar{q}$ and qg create an asymmetric production
 - t is produced preferentially in direction of incoming q

$$= \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| < 0) + N(\Delta|y| < 0)}$$

$$A_C = \frac{1}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

 $\Delta |y| = |y_t| - |y_{\bar{t}}|$

- Charge symmetric gg production dilutes asymmetry
- Several BSM models predict alterations to A_C , especially with variation as a function of $m_{t\bar{t}}$ and $\beta_{z,t\bar{t}}$
 - Anomalous vector/axial couplings (e.g. axigluons)
 - Heavy Z' bosons

Coefficients. Λ is scale of new physics EFT coefficient useful for many models (axigluons, kaluza-klein, randall-sundrum)

- LO $t\bar{t}$ production is symmetric
- Higher-order interferences between $q\bar{q}$ and qg create an asymmetric production
 - *t* is produced preferentially in the direction of the incoming *q*
- At the LHC, this produces a centralforward charge asymmetry:

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$
$$\Delta|y| = |y_t| - |y_{\bar{t}}|$$

- Charge symmetric *gg* production dilutes measurable asymmetry
- Several BSM models predict alterations to A_C especially with variation as a function of $m_{t\bar{t}}$ and $\beta_{z,t\bar{t}}$
 - Anomalous vector/axial couplings (e.g. axigluons)
 - Heavy Z' bosons

Possible to do an EFT interpretation to test many models!

Jacob Kempster - University of Birmingham 21 February 2022

ATLAS-CONF-2019-026 139 fb⁻¹

PER AD ARDUA ALTA

$A_{C} = 0.0060 \pm 0.0015$ (stat+syst.)

Both **inclusive and differential** measurements are found to be **compatible with SM** predictions, at NNLO in perturbation theory with NLO electroweak corrections

EFT interpretation probes single important parameter in the Warsaw basis (see CONF note!): C^{-}/Λ^{2}

 C^- is linear combination of Wilson Coefficients Λ is scale of new physics

This is valid for many models (axigluons, kaluza-klein, randallsundrum), for example:

 $C^-/\Lambda^2 = -4g_s^2/m_A^2$

Tighter bounds achieved than for previous LHC 8 TeV combination!

Energy Asymmetry

