

Searches for New Phenomena in Final States with 3rd Generation Quarks using the ATLAS Detector

Joseph Haley

Oklahoma State University

Lake Louise Winter Institute 2022 20–26 Feb 2022 Chateau Lake Louise

Probing New Physics with 3rd Generation Quarks

Top and bottom quarks are like gold

- Heavy \Rightarrow Very large Yukawa coupling
- Precious \Rightarrow Many BSM model predict enhanced coupling to 3rd generation
 - > Heavy mediators (W', Z', H/A, g_{KK} , G_{KK})
 - > Top partners (Vector-like quarks)

I will highlight the **most recent** searches (with some personal bias)

- Data from pp collisions with $\sqrt{s} = 13$ TeV recorded by ATLAS during **Run 2 (2015-2018)**
- See also searches with associated tops in Nedaa-Alexandra's talk on Monday

Probing New Physics with 3rd Generation Quarks

Top and bottom quarks are like gold

- Heavy \Rightarrow Very large Yukawa coupling
- Precious \Rightarrow Many BSM model predict enhanced coupling to 3rd generation
 - > Heavy mediators (W', Z', H/A, g_{KK} , G_{KK})
 - > Top partners (Vector-like quarks)

I will highlight the **most recent** searches (with some personal bias)

- Data from pp collisions with $\sqrt{s} = 13$ TeV recorded by ATLAS during **Run 2 (2015-2018)**
- See also searches with associated tops in Nedaa-Alexandra's talk on Monday

Identification of 3rd Generation Quarks

All analyses in this talk rely on the identification of jets from **top** or **bottom** quarks ⇒ Critical for separating from multijet events

High-p_T bottom quarks

- Small-R jet with displaced secondary vertex, high mass, and high track multiplicity
- ⇒ Train Deep Neural Network (DNN) b-tagger
- Uses all previous inputs, plus recurrent neutral network to exploit correlations between different tracks
- >50% better rejection w.r.t. Boosted Decision Tree

Dedicated b-taggers for new particle-flow and variable radius track jet reconstruction algorithms

All analyses in this talk rely on the identification of jets from **top** or **bottom** quarks ⇒ Critical for separating from multijet events

High-p_T top quarks ("boosted-top")

- Large-radius jet with highly collimated sub-jets, including one b-jet
- Discriminate from QCD jets using kinematics (jet mass, p_T, etc.) and dispersion of jet constituents (Nsubjettiness, splitting scales, and energy correlation functions)

Official DNN top-taggers defined for 50% and 80% efficiency

Some analyses define custom toptaggers (more later)

Identification of 3rd Generation Quarks

Vector-Like Quarks (VLQs)

Q[e]

5/3

2/3

-1/3

Joseph Haley

singlets

(B)

(T)

Both chiralities transform the same under SM gauge groups \Rightarrow "Vector-like"

• Avoids constraints from Higgs measurements

VLQs can cancel quadratic divergence in Higgs mass

Top partner 🛁

 \Rightarrow Show up in many BSM models

(Little/Composite Higgs, Topcolor, GUTs, ...)

- Naturalness requires VLQ mass ~TeV
- Can mix with SM quarks
- Naturalness + FCNC constraints prefer mixing with 3rd generation

VLQs

X

T

doublets

triplets

X

T

B

What do we look for?

$TT \rightarrow Zt + X$, with $Z \rightarrow \ell \ell$

Independently optimized for dilepton and trilepton final states

DNN "multi-class boosted object tagger" (MCBOT) trained to identify large-R jets from hadronically decaying top, V, H

$TT \rightarrow Zt + X$, with $Z \rightarrow \ell \ell$

Independently optimized for dilepton and trilepton final states

DNN "multi-class boosted object tagger" (MCBOT) trained to identify large-R jets from hadronically decaying top, V, H

Define 22 exclusive categories based on kinematic properties, b-tag and MCBOT

$TT \rightarrow Zt + X$, with $Z \rightarrow \ell \ell$

Independently optimized for dilepton and trilepton final states

DNN "multi-class boosted object tagger" (MCBOT) trained to identify large-R jets from hadronically decaying top, V, H

Define 22 exclusive categories based on kinematic properties, b-tag and MCBOT

$TT \rightarrow Zt + X$, with $Z \rightarrow \ell \ell$

Analyze full Run 2 ATLAS dataset (139fb-1)

- Sensitivity limited by statistical uncertainties
- No deviations from the background-only model observed
- ⇒ Limits on cross-section vs. VLQ mass for **benchmark** scenarios

$TT \rightarrow Zt + X$, with $Z \rightarrow \ell \ell$

Ŧ

↑

BR(T

Analyze full Run 2 ATLAS dataset (139fb-1)

- Sensitivity limited by statistical uncertainties
- No deviations from the background-only model observed
- \Rightarrow Limits on cross-section vs. VLQ mass for **benchmark** scenarios

⇒ Model-independent limits on VLQ mass vs. branching ratio:

Extends the excluded B & T mass limits by more than 200 GeV compared to previous analysis using 2015+16 data (36fb⁻¹)

$T \rightarrow Ht/Zt$, with $t \rightarrow lvb$

Leptonic top: High-pT e/ μ + E_T^{miss} + b-jet

Boosted H or Z: Small-R jets "re-clustered" into Large-R jets

- Tag as H, V, or top based on jet mass, $p_{\scriptscriptstyle T}$ and number of sub-jets

Sensitivity limited by modeling uncertainties on dominant tt and single top backgrounds

• Data-driven kinematic reweighting for tt&tW and V+jets

Divide events into 24 regions based on number of jets, b-tags, H, V, & top-tags

Perform combined fit to discriminating variable in all regions

$T \rightarrow Ht/Zt$, with $t \rightarrow lvb$

Leptonic top: High-pT e/ μ + E_T^{miss} + b-jet

Boosted H or Z: Small-R jets "re-clustered" into Large-R jet

- Tag as H, V, or top based on jet mass, $p_{\scriptscriptstyle T}$ and number of sub-j_

Sensitivity limited by modeling uncertainties on dominant tt and single top backgrounds

• Data-driven kinematic reweighting for tt&tW and V+jets

Divide events into 24 regions based on number of jets, b-tags, H, V, & top-tags

Perform combined fit to discriminating variable in all regions

$$T \rightarrow Ht/Zt$$
, with $t \rightarrow lvb$

Analyze full Run 2 ATLAS data set (139 fb-1)

No deviation from the background-only hypothesis

 \Rightarrow Set limits on singlet T as a function of mass m_T and coupling constant κ

$$T \rightarrow Ht/Zt$$
, with $t \rightarrow lvb$

Analyze full Run 2 ATLAS data set (139 fb-1)

No deviation from the background-only hypothesis

 \Rightarrow Set limits on singlet T as a function of mass m_T and coupling constant κ

STATE COMPERING

- $T \rightarrow Ht$ with $H \rightarrow bb$ and $t \rightarrow qqb$
- 2 high-pT large-R jets with b-subjets

Dominant background from QCD multijet events

- Estimate from data using an extension of the "ABCD" method
- 2D grid based on the tagging state of the two large-R jets
 - Higgs or top tag
 - > Number of b-tagged VRTrack jets inside large-R jet

$$N_A = N_B \times \frac{N_C}{N_D}$$

- $T \rightarrow Ht$ with $H \rightarrow bb$ and $t \rightarrow qqb$
- 2 high-pT large-R jets with b-subjets

Dominant background from QCD multijet events

- Estimate from data using an extension of the "ABCD" method
- 2D grid based on the tagging of the two large-R jets
 - Higgs or top tag
 - Number of b-tagged VRTrack jets inside large-R jet

ate	1t 0H ≥2b				VR8		NR		SR	NR
	0t 1H ≥2b			VR6			SR			SR
jing st	0t 0H ≥2b									
t tagç	1t 0H 1b						NR		SR	NR
-R je	0t 1H 1b						VR1			
large	0t 0H 1b						VR2			VR7
ading	1t 0H 0b						VR3		VR5	
nd-le	0t 1H 0b						VR4			
Seco	0t 0H 0b									
		0t 0H 0b	0t 1H 0b	1t 0H 0b	0t 0H 1b	0t 1H 1b	1t 0H 1b	0t 0H ≥2b	0t 1H ≥2b	1t 0H ≥2b

Leading large-R jet tagging state

- $T \rightarrow Ht$ with $H \rightarrow bb$ and $t \rightarrow qqb$
 - 2 high-pT large-R jets with b-subjets

Dominant background from QCD multijet events

- Estimate from data using an extension of the "ABCD" method
- 2D grid based on the tagging of the two large-R jets
 - Higgs or top tag
 - Number of b-tagged VRTrack jets inside large-R jet

	1t 0H ≥2b				VR8		INIX		эк	NK
ing state	0t 1H ≥2b			VR6			SR			SR
	0t 0H ≥2b									
t tago	1t 0H 1b						NR		SR	NR
l large-R je	0t 1H 1b						VR1			
	0t 0H 1b						VR2			VR7
adinç	1t 0H 0b						VR3		VR5	
nd-le	0t 1H 0b						VR4			
Secc	0t 0H 0b									
		0t 0H 0b	0t 1H 0b	1t 0H 0b	0t 0H 1b	0t 1H 1b	1t 0H 1b	0t 0H ≥2b	0t 1H ≥2b	1t 0H ≥2b

Leading large-R jet tagging state

Joseph Haley

 Validation Regions (VRs) enhanced in backgrounds
→ Validate background modeling

LLWI2022

- $T \rightarrow Ht$ with $H \rightarrow bb$ and $t \rightarrow qqb$
 - 2 high-pT large-R jets with b-subjets

Dominant background from QCD multijet events

- Estimate from data using an extension of the "ABCD" method
- 2D grid based on the tagging of the two large-R jets
 - Higgs or top tag
 - Number of b-tagged VRTrack jets inside large-R jet

- Validation Regions (VRs) enhanced in backgrounds
 → Validate background modeling
- Signal Region (SR) enhanced in signal
 → Sensitive to T→Ht

Leading large-R jet tagging state

- $T \rightarrow Ht$ with $H \rightarrow bb$ and $t \rightarrow qqb$
 - 2 high-pT large-R jets with b-subjets

Dominant background from QCD multijet events

- Estimate from data using an extension of the "ABCD" method
- 2D grid based on the tagging of the two large-R jets
 - Higgs or top tag
 - Number of b-tagged VRTrack jets inside large-R jet

nd-leading large-R jet tagging state	1t 0H ≥2b				VR8		NR		SR	NR
	0t 1H ≥2b			VR6			SR			SR
	0t 0H ≥2b									
	1t 0H 1b						NR		SR	NR
	0t 1H 1b						VR1			
	0t 0H 1b						VR2			VR7
	1t 0H 0b						VR3		VR5	
	0t 1H 0b						VR4			
Secc	0t 0H 0b									
		0t 0H 0b	0t 1H 0b	1t 0H 0b	0t 0H 1b	0t 1H 1b	1t 0H 1b	0t 0H ≥2b	0t 1H ≥2b	1t 0H ≥2b

Joseph Haley

- Validation Regions (VRs) enhanced in backgrounds
 → Validate background modeling
- Signal Region (SR) enhanced in signal
 → Sensitive to T→Ht
- Normalization Region (NR) enhanced in ttbar
 → Use in fit to constrain ttbar

LLWI2022

Simultaneous fit of dijet mass distribution in SR and NR

 Fit of signal cross section and normalization of tt background

Set limit as a function of the T mass m_{T} and coupling κ

 \Rightarrow Exclude couplings above $\kappa\simeq~0.4$ for low VLQ masses (m_T $\lesssim~1.5~\text{TeV})$

Simultaneous fit of dijet mass distribution in SR and NR

 Fit of signal cross section and normalization of tt background

Set limit as a function of the T mass m_{T} and coupling κ

 \Rightarrow Exclude couplings above $\kappa\simeq~0.4$ for low VLQ masses (m_T $\lesssim~1.5~\text{TeV})$

Sensitivity gains from improved multijet estimation, jet tagging, and exploitation of boosted topologies.

New heavy gauge bosons (W', Z') could explain the lepton-flavor universality deviations in recent LHCb & Belle results

Heavy W' decaying to boosted top and b-quark

- Classify events by:
 - DNN top tag category
 - b-tag from W' decay
 - b-tagged jet in large-R jet
- Data-driven ABCD method to estimate for dominant multijet background
- Significant improvement from top and b-tagging and improved multijet estimate

New heavy gauge bosons (W', Z') could explain the lepton-flavor universality deviations in recent LHCb & Belle results

Heavy W' decaying to boosted top and b-quark

Validate background modeling in VR

New heavy gauge bosons (W', Z') could explain the lepton-flavor universality deviations in recent LHCb & Belle results

Heavy W' decaying to boosted top and b-quark

- Combined fit in SR1, SR2, SR3
 - Consistent with background-only

1.25

0.75 0.5^E. 1000

3000

4000

5000

6000

m_{tb} [GeV]

7000

2000

W' \rightarrow tb with hadronic final state

New heavy gauge bosons (W', Z') could explain the lepton-flavor universality deviations in recent LHCb & Belle results

Heavy W' decaying to boosted top and b-quark

- Combined fit in SR1, SR2, SR3
 - Consistent with background-only
- Set limits on cross-section
 - Exclude W' with right-handed coupling for masses below 4.4TeV
 - Sensitivity limited by statistical uncertainty

Improvement in mass limit by 1TeV w.r.t previous result using 2015+2016 data (36fb⁻¹)

Z'tt→tttt

Search for top-philic resonance

- Can only be produced in association with tt
- Reconstructed Z' from large-R jets with cuts on jet mass, pT, and number of subjets

• Suppress multijet background by requiring one lepton from associate tt

Define signal and control regions by multiplicities of additional jets and b-jets

(Mostly) data-driven background estimate

- Shape of background determined in control regions and extrapolated to signal regions
- Extrapolation factors derived from simulation

Scan m_{tt} spectrum in signal regions (BumpHunter)

Z'tt→tttt

Search for top-philic resonance

- Can only be produced in association with tt
- Reconstructed Z' from large-R jets with cuts on jet mass, pT, and number of subjets

• Suppress multijet background by requiring one lepton from associate tt

Define signal and control regions by multiplicities of additional jets and b-jets

(Mostly) data-driven background estimate

- Shape of background determined in control regions and extrapolated to signal regions
- Extrapolation factors derived from simulation

Scan m_{tt} spectrum in signal regions (BumpHunter)

Z'tt→tttt

Search for top-philic resonance

- Can only be produced in association with tt
- Reconstructed Z' from large-R jets with cuts on jet mass, pT, and number of subjets

• Suppress multijet background by requiring one lepton from associate tt

Define signal and control regions by multiplicities of additional jets and b-jets

(Mostly) data-driven background estimate

- Shape of background determined in control regions and extrapolated to signal regions
- Extrapolation factors derived from simulation

Scan m_{tt} spectrum in signal regions (BumpHunter)

Phys. Rev. D 105 (2022) 012001

Z'bb→bbbb

Reconstruct Z' from two highest-p_T b-jets

Require one or two additional b-jets to reduce dominant multijet background

• Not required in previous searches

New trijet trigger with asymmetric p_T thresholds

• Added in 2017 \Rightarrow 103 fb⁻¹ of data

Data-driven estimate using functional decomposition (FD)

• Background spectrum given by series of orthonormal exponential basis functions

$$\Omega(z) = \sum_{n=1}^{N} c_n E_n(z)$$

Scan dijet mass spectrum (BumpHunter)

Phys. Rev. D 105 (2022) 012001

Z'bb→bbbb

Reconstruct Z' from two highest-p_T b-jets

Require one or two additional b-jets to reduce dominant multijet background

• Not required in previous searches

New trijet trigger with asymmetric p_T thresholds

• Added in 2017 \Rightarrow 103 fb⁻¹ of data

Data-driven estimate using functional decomposition (FD)

• Background spectrum given by series of orthonormal exponential basis functions

$$\Omega(z) = \sum_{n=1}^{N} c_n E_n(z)$$

Scan dijet mass spectrum (BumpHunter)

⇒ No significant excesses (set limits)

20-50% improvement from additional b-jet requirement!

Conclusion

Many recent results from searches for new particles that decay to top and bottom quarks using ATLAS Run 2 data

- Significant improvements in sensitivity provided by new b- and top-tagging techniques
- Also improved background modeling

Unfortunately, still no signs of new physics...

But more Run 2 analyses coming soon! ... And Run 3 just around the corner!!!

Thank you!

(Time for lunch!)

List of presented analyses

- Search for pair-production of vector-like quarks in pp collision events at $\sqrt{s} = 13$ TeV with at least one leptonically-decaying Z boson and a third-generation quark with the ATLAS detector (ATLAS-CONF-2021-024)
- Search for single production of vector-like T quarks decaying to Ht or Zt in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (ATLAS-CONF-2021-040)
- Search for single Vector-Like B -quark production and decay via $B \rightarrow bH(bb)$ in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (ATLAS-CONF-2021-018)
- Search for vector boson resonances decaying to a top quark and a bottom quark in hadronic final states using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (<u>ATLAS-CONF-2021-043</u>)
- Search for heavy resonances in four-top-quark final states in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector (<u>ATLAS-CONF-2021-048</u>)
- Search for heavy particles in the *b*-tagged dijet mass distribution with additional *b*-tagged jets in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment (<u>arXiv:2108.09059</u>)
- Search for a vector-like quark produced in 13 TeV proton-proton collisions and decaying into a Higgs boson and top quark with a fully-hadronic final state at ATLAS (<u>EXOT-2019-07</u>)

$B \rightarrow bH(bb)$

Reclustered large-R jet with two matched b-tagged VRtrack jets

Significantly extended VLB parameter space being probed (previous limits: for (B,Y) doublet scenario @1.2TeV)

Identification of 3 b-jets important for dominant (90%) multijet background suppression

Identify boosted H \rightarrow bb as large-R jet with mass \approx m_H, 2-pronged substructure, jand associated b-tagged variable-radius track jets (VRtrack jets)

Purely data-driven background estimate using several orthogonal auxiliary regions ("ABCD method")

• Extrapolate background from control region (B) to search region (A) using transfer functions measured in neighboring regions (C/D)

Binned maximum-likelihood fit to reconstructed VLB mass distribution m_B

No significant excesses found in full Run 2 dataset \Rightarrow Set limits on coupling and as a function of the VLB mass:

