## Searches for R-parity violating Supersymmetry with the ATLAS Experiment

#### H.D.Nghia Nguyen On behalf of the ATLAS Collaboration



Lake Louise Winter Institute 2022

Université m

de Montréal

February 21st 2022

#### Introduction

- Supersymmetry (SUSY) is an extension of Standard Model (SM) that relates fermions and bosons
- Generic SUSY models, superpotential contains terms that violate leptonic and baryonic number

$$W_{\mathcal{R}_p} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \epsilon_i H_u L_i + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$$

- R-parity ( $R_p = (-1)^{3(B-L)+2S}$ ) conservation is often introduced to avoid rapid proton decay
- However, **R-parity violation (RPV) is still viable** with small  $\lambda_{RPV}$  and only *L* or *B* is violated at a time
- **RPV models are well motivated** and have weaker limits than RPC models
- Give rise to a wide variety of experimental signatures depending on the  $\lambda_{RPV}$  in consideration
  - RPV models do not often require large  $E_{\rm T}^{\rm miss}$  like in RPC models

1

$$W_{\mathcal{R}_p} = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \epsilon_i H_u L_i + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$$





• This talk highlights 4 recent searches using full Run 2 ATLAS data ( $L = 139 \text{ fb}^{-1}$ )



LLWI2022



## **RPV EW 3-leptons**

- Inspired by MSSM that adds a gauged group  $U(1)_{B-L}$ and includes right-handed neutrino supermultiplets
  - L violation only, B still conserved
- Targeting  $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$  and  $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^0$  production with at least one **decay of interest**:  $\tilde{\chi}_1^{\pm} \rightarrow Zl \rightarrow lll$
- Wino-type chargino and neutralino are LSP
  - Nearly mass-degenerate
- Three SRs aims at different decays of  $2^{nd} \tilde{\chi}_1^{\pm}/\tilde{\chi}_1^0$ 
  - SR3 $l: N_l = 3$  and significant  $E_T^{\text{miss}}$
  - SR4 $l : N_l \ge 4$  and possible  $E_T^{\text{miss}}$
  - SRFR:  $N_l \ge 4$  and 2<sup>nd</sup> boson candidate (*Z*, *W*, Higgs)



Phys. Rev. D 103, (2021) 112003



 $\epsilon_i H_u L_i$ 

#### **RPV EW 3-leptons**

#### • Main backgrounds:

- WZ, ZZ and  $t\bar{t}Z$  estimated using MC, normalized to data in dedicated CRs
- Processes with  $\geq 1$  fake lepton estimated with data-driven (fake-factor) method
- Others SM processes estimated directly from MC



Data in agreement with post-fit background in all VRs

LLWI2022

 $\epsilon_i H_u L_i$ 

Phys. Rev. D 103, (2021) 112003

## **RPV EW 3-leptons**

- Good agreement between data and SM expectation in  $m_{Zl}$  distribution in each SR
- Limits on  $\tilde{\chi}_1^{\pm}/\tilde{\chi}_1^0$  masses is set depending on the branching ratios into a Z-boson and lepton flavor
  - For large BR to Z-boson ,  $\tilde{\chi}_1^{\pm}/\tilde{\chi}_1^0$  masses up to 975 GeV excluded in scenario with equal branching fraction to  $e, \mu, \tau$







H.D.Nghia Nguyen (UdeM)

#### **RPV 4-leptons**

- Consider 3 NLSP pair production possibilities with LSP decays into  $\geq 4$  lepton Wino NLSP (*e*,  $\mu$ ,  $\tau_{had}$ ) final state
  - Results probe  $\lambda_{12k}$  and  $\lambda_{i33}$   $(i, k \in 1, 2)$  for RPV couplings
- Three event categories based on  $e/\mu$  and  $\tau_{had}$  multiplicity requirement
  - 4LOT:  $N_{e/\mu} \ge 4$  and  $N_{\tau_{had}} \ge 0$
  - *3L1T:*  $N_{e/\mu} = 3$  and  $N_{\tau_{had}} = 1$
  - *2L2T*:  $N_{e/\mu} = 2$  and  $N_{\tau_{had}} \ge 2$
- A general region 5L0T with  $N_{e/\mu} \ge 5$  also considered
- Further requirements on Z veto, presence of b-tagged jets, and  $m_{\rm eff}$  are applied to define 10 SRs for RPV scenarios

$$m_{\rm eff} = E_{\rm T}^{\rm miss} + \sum_{e,\,\mu,\,\tau_{\rm had},\,{
m jets}} p_{\rm T}$$

- Main backgrounds:
  - Irreducible: ZZ and  $t\bar{t}Z$  shape exacted from MC, normalization derived from data
  - **Reducible:**  $\geq$  1 fake/non-prompt lepton, data-driven estimation (*fake*-factor)

LLWI2022



#### **RPV 4-leptons**

- Observations in agreement with SM expectations
  - Highest local significance of  $1.9\sigma$  in SR5L
  - SR5L yields:  $N_{\rm obs}^{SR5L} = 21$ , and  $N_{\rm SM}^{SR5L} = 12.4 \pm 2.3$
- $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ ,  $\tilde{l}_L/\tilde{\nu}$ , and  $\tilde{g}$  masses up to 1.6 TeV, 1.2 TeV, and 2.5 TeV are, respectively, excluded
  - Improve previous limits in similar models by 100-350 GeV



JHEP 07 (2021) 167

ATLAS

4 leptons

vs = 13 TeV, 139 fb

R0-ZZ <sup>bght</sup> bveto

SR0 loos

SR0 <sup>5ght</sup> bveh

SR0 bre

SR0-ZZ loose

SR0-ZZ

Events

 $10^{2}$ 

10

Significance

 $\frac{1}{2} \lambda_{ijk} L_i L_j E_k^c$ 

Data

SR1<sub>bre</sub>

SR2 bvet

SR1<sup>1ght</sup> bvet

SR1<sup>bos</sup>

44 Total SM

tīZ

Higgs

Othe

## RPV multi-*b*-jet

- Search for top-squark pair production in multi-*b*-jet final states
  - $\geq$  4 jets with  $p_{\rm T} \geq$  120 (140) GeV, extra jets have  $p_{\rm T} \geq$  25 GeV
- Analysis strategy is based on counting events in different jet number (N<sub>j</sub>) and b-tagged jet number (N<sub>b</sub>)
- Events selection for SR:  $N_j \ge 6$ ,  $N_b \ge 4$ , reconstructed lepton vetoed
- **Dominant backgrounds**: multi-jet (data-driven  $\text{TRF}_{MI}$ ) and  $t\bar{t} + X$  (MC)
  - TRF<sub>MJ</sub> based on probability of *b*-tagging extra jet produced in multijet event

| 8        |         |                                            |                                            |                                  |  |  |
|----------|---------|--------------------------------------------|--------------------------------------------|----------------------------------|--|--|
| Analysis |         |                                            | $N_{\mathrm{b}}$                           |                                  |  |  |
| Regions  |         | 3                                          | 4                                          | ≥ 5                              |  |  |
|          | 6<br>7  |                                            | $\mathrm{SR}_{	ilde{t}}$                   | $\mathrm{SR}_{	ilde{t}}$         |  |  |
|          |         | VR-MJ $C_{\text{mass}}^{\text{max}} = 1.2$ | VR-MJ $C_{\text{mass}}^{\text{max}} = 0.9$ |                                  |  |  |
|          |         |                                            | $\mathrm{SR}_{	ilde{t}}$                   | $\mathrm{SR}_{\tilde{t}}$        |  |  |
| Nj       |         | VR-MJ $C_{\text{mass}}^{\text{max}} = 1.2$ | VR-MJ $C_{\text{mass}}^{\text{max}} = 0.7$ |                                  |  |  |
|          | 8<br>≥9 |                                            | $\mathrm{SR}_{	ilde{t}}$                   | $SR_{\tilde{t}}, SR_{discovery}$ |  |  |
|          |         | VR-MJ $C_{\text{mass}}^{\text{max}} = 0.9$ | VR-MJ $C_{\text{mass}}^{\text{max}} = 0.5$ |                                  |  |  |
|          |         |                                            | $\mathrm{SR}_{	ilde{t}}$                   | $SR_{\tilde{t}}, SR_{discovery}$ |  |  |
| 2        |         | VR-MJ $C_{\text{mass}}^{\text{max}} = 0.7$ | VR-MJ $C_{\text{mass}}^{\text{max}} = 0.4$ |                                  |  |  |
|          |         |                                            |                                            |                                  |  |  |

VR-MJ: TRF<sub>MI</sub> validation regions



Saturate BR in  $m_{\tilde{t}} - m_{\tilde{\chi}_1^{\pm}} < m_{top}$ Significant in  $m_{\tilde{t}} - m_{\tilde{\chi}_1^{\pm}, \tilde{\chi}_{1,2}^0} > m_{top}$ 

Eur. Phys. J. C 81 (2021) 11  $\frac{1}{2} \lambda_{ijk}^{c} U_i^c D_j^c D_k^c$ 



H.D.Nghia Nguyen (UdeM)

## RPV multi-*b*-jet

ATLAS

SR<sub>2</sub> Post-Fit

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 

 $m(\tilde{t}) = 600 \text{ GeV}, m(\tilde{\chi}_{\star}^{\pm}) = 550 \text{ GeV}$ 

Events

 $10^{4}$ 

 $10^{3}$ 

 $10^{2}$ 

- Events with  $N_j \ge 6$ ,  $N_b \ge 4$  are input for multi-bin fit
- No significant excess over the SM expectation observed
- Exclusion of top-squark masses reaches 950 GeV



#### Hypothesis testing based on Profile Likelihood

Uncertainty

#### RPV multi-jet 1-lepton Eur. Phys. J. C 81 (2021) 1023 $\lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c$

- Search for RPV signals in final states with  $\geq 1$  lepton,  $\geq 8$  to 15 jets, some of which are *b*-tagged, no  $E_{\rm T}^{\rm miss}$  required
  - 3 production modes: gluinos, top-squark, electroweakinos
- Events are split into two disjoint categories: 1l and  $2l^{sc}$  and further categorized based on jet and *b*-jet multiplicity
- Two analysis strategies depending on production type
  - Jet counting: 5 jet- $p_{\rm T}$  thresholds of 20, 40, 60, 80, 100 GeV corresponding to highest jet multiplicity considered
  - **EWK analysis**: NN discriminant (1*l* only) introduced to separate higgsino signal from  $t\bar{t}$  background
- Multi-bin fit to two-dimensional space of jet and *b*-jet multiplicity is performed to constrain SUSY parameters



H.D.Nghia Nguyen (UdeM)

## RPV multi-jet 1-lepton Eur. Phys. J. C 81 (2021) 1023 $\lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c$

- Main backgrounds: W/Z + jets,  $t\bar{t}$  + jets, VV,  $t\bar{t}W$ 
  - Suffer from large uncertainties at high jet multiplicity
  - Data-driven approach: extrapolate background estimation from moderate to high jet multiplicity
- Evolution of background events for process X parameterized:

$$r^{X}(j) \equiv N_{j+1}^{X}/N_{j}^{X} = c_{0}^{X} + c_{1}^{X}/(j + c_{2}^{X}),$$

- $c_i^X$  are process-dependent constants and extracted from data
- Background yields of process X in *j*-th jet slice formulated as  $N_j^X = N_4^X \prod_{j'=4}^{j'=j-1} r^X(j')$
- Similar approach for *b*-jet multiplicity prediction of process *X*



LLWI2022

## RPV multi-jet 1-lepton Eur. Phys. J. C 81 (2021) 1023 $\lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c$

- No observed significant excess over the SM expectation
- Higgsino masses between 200 and 320 GeV excluded
- Exclusion of gluino and top-squark masses up to 2.38 TeV and 1.36 TeV
- Sensitive to SM  $t\bar{t}t\bar{t}$  production:  $\mu_{t\bar{t}t\bar{t}} = 2.0^{+0.9}_{-0.7}$



EWK, 1l,  $\geq$ 15 jets, ( $p_{\rm T} \geq 20$  GeV)

 $t\bar{t}$  + jets

W+ jets

Z+ jets

16

Other

**ATLAS** √s = 13 TeV, 139 fb<sup>-</sup>

10<sup>2</sup>

 $1\ell + \ge 15$  jets ( $p_T > 20$  GeV)

higgsino,  $m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV} (x20)$ 

#### Conclusions

- ATLAS searches for SUSY RPV cover a wide range of scenarios
  - No significant excess beyond SM expectations observed yet
- Many ATLAS RPV searches not covered can be found in
  - ATLAS SUSY RPV Public Results
- Run-3 LHC is coming with lots more data to study  $\rightarrow$  Stay tuned!



#### RPV multi-jet 1-lepton



#### **RPV EW 3-leptons** ATLAS Fraction to $\epsilon_i H_u L_i$ s=13 TeV, 139 fb 0.8 All limits at 95% CL $\widetilde{\chi}_{\cdot}^{\pm}\widetilde{\chi}_{\cdot}^{\mp} + \widetilde{\chi}_{\cdot}^{\pm}\widetilde{\chi}_{\cdot}^{0}$ production Branching $\check{c}^{\pm} \rightarrow Z l^{\pm}, H l^{\pm}, W^{\pm} \gamma$ $\tilde{c}^{0} \rightarrow Zv, Hv, W^{\pm}l$ $I = (e, \mu, \tau)$ 0.5 Expected Limit (±1 σ<sub>erro</sub>) Observed Limit (±1 of SUS Observed Exclusion Region 400 600 200 1000 800 $m(\widetilde{\chi}_{\star}^{\pm}) = m(\widetilde{\chi}_{\star}^{0})$ [GeV] **RPV 4-leptons** $\widetilde{g}\widetilde{g}$ production, $\widetilde{g} \rightarrow q\overline{q} \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{0} \rightarrow l^{+} l^{v}$ (q=u,d,s,c,b) ATLAS



# THANK YOU

#### **ATLAS SUSY searches**

C.

#### ATL-PHYS-PUB-2021-019

**ATLAS** Preliminary

Reference

2010.14293

2102.10874

2010.14293

2010.14293

2101.01629

1805.11381

2008.06032

1909.08457

1710.05544

2003.11956

ATLAS-CONF-2021-007

 $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ 

Pure hiaasino

 $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_i = 1$ 

Mass scale [TeV]

 $\sqrt{s} = 13 \text{ TeV}$ 

| ATLAS SUSY | / Searches* | <sup>-</sup> - 95% CL | Lower Limits |
|------------|-------------|-----------------------|--------------|
|------------|-------------|-----------------------|--------------|

| Jι    | ine 2021                                                                                                                                               |                                    | 00 /                  |                                                |                                 |                                                              | Linito                     |            |           |           |                  |                                                                                                                                                                                                                                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|------------------------------------------------|---------------------------------|--------------------------------------------------------------|----------------------------|------------|-----------|-----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Model                                                                                                                                                  | S                                  | ignatur               | e j                                            | <i>L dt</i> [fb <sup>-1</sup> ] | ']                                                           |                            | Mass limit |           |           |                  |                                                                                                                                                                                                                                                                                                         |
| 0     | $	ilde{q}	ilde{q},	ilde{q}{ ightarrow}q	ilde{\chi}_1^0$                                                                                                | 0 e,μ<br>mono-jet                  | 2-6 jets<br>1-3 jets  | $E_T^{\mathrm{miss}}$<br>$E_T^{\mathrm{miss}}$ | 139<br>36.1                     |                                                              | <, 8× Degen.]<br>< Degen.] |            | 1<br>0.9  | .0        | 1.85             | $\mathfrak{m}(	ilde{\mathcal{X}}_1^0){<}400~{ m GeV}$<br>$\mathfrak{m}(	ilde{q}){-}\mathfrak{m}(	ilde{\mathcal{X}}_1^0){=}5~{ m GeV}$                                                                                                                                                                   |
|       | $\tilde{g}\tilde{g},  \tilde{g} { ightarrow} q \bar{q} \tilde{\chi}_1^0$                                                                               | 0 <i>e</i> , <i>µ</i>              | 2-6 jets              | $E_T^{\rm miss}$                               | 139                             | ĩg<br>ĩg                                                     |                            |            | Forbidd   | en        | 2.:<br>1.15-1.95 | 3 $m(\tilde{\chi}_1^0)=0 \text{ GeV}$<br>$m(\tilde{\chi}_1^0)=1000 \text{ GeV}$                                                                                                                                                                                                                         |
| 5     | $\tilde{g}\tilde{g},  \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$ $\tilde{g}\tilde{g},  \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ | 1 e,μ<br>ee,μμ                     | 2-6 jets<br>2 jets    | $E_T^{\text{miss}}$                            | 139<br>36.1                     | ĩg<br>ĩg                                                     |                            |            |           | 1.2       | 2.2              | m( $	ilde{\chi}_1^0$ )<600 GeV<br>m( $	ilde{\chi}_1$ )=50 GeV                                                                                                                                                                                                                                           |
|       | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$                                                                                       | 0 e,μ<br>SS e,μ                    | 7-11 jets<br>6 jets   | $E_T^{\rm miss}$                               | 139<br>139                      | ĩềp ĩềp                                                      |                            |            |           | 1.15      | 1.97             | $m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$<br>$m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$                                                                                                                                                                                                   |
| -     | $\tilde{g}\tilde{g},  \tilde{g} \rightarrow t t \tilde{\chi}_1^0$                                                                                      | 0-1 <i>e</i> , μ<br>SS <i>e</i> ,μ | 3 <i>b</i><br>6 jets  | $E_T^{\rm miss}$                               | 79.8<br>139                     | ĩg ĩg                                                        |                            |            |           | 1.25      | 2.25             | $\mathfrak{m}(	ilde{\mathcal{X}}_1^0){<}200~{ m GeV}$<br>$\mathfrak{m}(	ilde{g}){-}\mathfrak{m}(	ilde{\mathcal{X}}_1^0){=}300~{ m GeV}$                                                                                                                                                                 |
|       | $\tilde{b}_1 \tilde{b}_1$                                                                                                                              | 0 <i>e</i> , <i>µ</i>              | 2 b                   | $E_T^{\rm miss}$                               | 139                             | ${egin{array}{c} {ar b}_1 \ {ar b}_1 \ {ar b}_1 \end{array}$ |                            |            | 0.68      | 1.255     |                  | $m(	ilde{\mathcal{X}}_1^0){<}400GeV$<br>10 $GeV{<}\Deltam(	ilde{b}_1,	ilde{\mathcal{X}}_1^0){<}20GeV$                                                                                                                                                                                                   |
| tion  | $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$                                                 | 0 e,μ<br>2 τ                       | 6 b<br>2 b            | $E_T^{ m miss}$<br>$E_T^{ m miss}$             | 139<br>139                      | ${egin{array}{c} {ar b}_1 \ {ar b}_1 \end{array}}$           | Forbidden                  |            | 0.13-0.85 | 0.23-1.35 | i                | $\begin{array}{l} \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) \!=\! 130 \; \mathrm{GeV}, \; m(\tilde{\chi}_{1}^{0}) \!=\! 100 \; \mathrm{GeV} \\ \Delta m(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{0}) \!=\! 130 \; \mathrm{GeV}, \; m(\tilde{\chi}_{1}^{0}) \!=\! 0 \; \mathrm{GeV} \end{array}$ |
| roduc | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$<br>$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W h \tilde{\chi}_1^0$       | 0-1 e,μ<br>1 e,μ                   | ≥ 1 jet<br>3 jets/1 b | $E_T^{miss}$<br>$E_T^{miss}$                   | 139<br>139                      | $\tilde{t}_1$<br>$\tilde{t}_1$                               |                            | Forbidden  | 0.65      | 1.25      |                  | $m(\tilde{\chi}_1^0)=1 \text{ GeV}$<br>$m(\tilde{\chi}_1^0)=500 \text{ GeV}$                                                                                                                                                                                                                            |
| ect p | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$                                     | 1-2 τ<br>0 e μ                     | 2 jets/1 b            | $E_T^{miss}$                                   | 139                             | ĩ <sub>1</sub>                                               |                            |            | Forbidden | 1.        | 4                | $m(\tilde{\tau}_1) = 800 \text{ GeV}$                                                                                                                                                                                                                                                                   |
| dir   | $I_1I_1, I_1 \rightarrow c\chi_1 / cc, c \rightarrow c\chi_1$                                                                                          | 0 e,μ<br>0 e,μ                     | ∠ c<br>mono-jet       | $E_T^{T}$                                      | 139                             | č<br>ĩ,                                                      |                            | 0.5        | 0.85      |           |                  | $m(\tilde{t}_1)=0$ GeV<br>$m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5$ GeV                                                                                                                                                                                                                          |

 $\tilde{\chi}_{1}^{0}$ )<200 GeV ATLAS-CONF-2018-041  $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}$  $\tilde{\chi}_{1}^{0}$  = 300 GeV 1909.08457  $\tilde{b}_1 \tilde{b}_1$ (X̃1)<400 GeV 2101.12527 1,  $\tilde{\chi}_1^0$ )<20 GeV 2101.12527  $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1$  $(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ 1908.03122  $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ ATLAS-CONF-2020-031 2004.14060,2012.03799  $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow$  $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ (𝑋1)=500 GeV 2012.03799  $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow$  $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow$ n(t1)=800 GeV ATLAS-CONF-2021-008  $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow$  $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1805.01649  $m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$ 2102.10874 139  $0 e, \mu$  $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$  $E_T^{\text{miss}}$ 139 0.067-1.18 1-2 e, µ 1-4 b  $m(\tilde{\chi}_{2}^{0})=500 \text{ GeV}$ 2006.05880  $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$  $E_T^{miss}$ 139 0.86 2006.05880  $3e,\mu$ 1bForbidden  $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$  $E_T^{\text{miss}}$  $E_T^{\text{miss}}$ Multiple ℓ/jets  $\begin{array}{c} \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \\ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \end{array}$  $m(\tilde{\chi}_1^0)=0$ , wino-bind 2106.01676 ATLAS-CONE-2021-022  $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$  via WZ 139 0.96 ee, µµ  $\geq 1$  jet 139 0.205 1911.12606  $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$  GeV, wino-bino  $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$  via WW  $E_T^{miss}$ 139 0.42 1908.08215  $2e,\mu$  $m(\tilde{\chi}_1^0)=0$ , wino-bino  $E_T^{miss}$  $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$  via Wh Multiple *l*/jets 139  $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$  Forbidden 1.06  $m(\tilde{\chi}_1^0)=70$  GeV, wino-bino 2004.10894. ATLAS-CONF-2021-022  $E_T^{miss}$  $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$  via  $\tilde{\ell}_L / \tilde{\nu}$ 2 e, µ 139 1.0  $m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_1^{\pm}) + m(\tilde{\chi}_1^{0}))$ 1908.08215  $E_T^{miss}$  $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ 2τ 139  $[\tilde{\tau}_L, \tilde{\tau}_{R,L}]$ 0.16-0.3 0.12-0.39  $m(\tilde{\chi}_{1}^{0})=0$ 1911.06660  $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$  $2e.\mu$ 0 jets  $E_T^{\text{miss}}$  $E_T^{\text{miss}}$ 139 0.7  $m(\tilde{\chi}_1^0)=0$ 1908.08215 ≥ 1 jet 139 ee, µµ 0.256  $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$ 1911.12606  $\begin{array}{c} \geq 3 \ b \\ 0 \ \text{jets} \end{array} \begin{array}{c} E_T^{\text{miss}} \\ E_T^{\text{miss}} \\ \geq 2 \ \text{large jets} \ E_T^{\text{miss}} \end{array}$  $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ 0 e, µ 36.1 0.13-0.23 0.29-0.88  $BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ 1806.04030 0.55  $4 e, \mu$ 139  $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ 2103.11684 0 e, µ 139 0.45-0.93  $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ ATLAS-CONF-2021-022 Direct  $\tilde{\chi}_1^+ \tilde{\chi}_1^-$  prod., long-lived  $\tilde{\chi}_1^\pm$ Disapp. trk  $E_T^{\text{miss}}$ 139 0.66 ATLAS-CONF-2021-015 1 jet Pure Wind 0.21 Pure higgsind ATLAS-CONF-2021-015 Stable g R-hadron Multiple 36.1 2.0 1902.01636,1808.04095 Multiple 36.1 2.05 2.4 1710.04901,1808.04095 Metastable  $\tilde{g}$  R-hadron,  $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$  $m(\tilde{\chi}_1^0)=100 \text{ GeV}$  $\tilde{\sigma} = [\tau]$  $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$ Displ. lep  $E_T^{\text{miss}}$ 139 0.7 2011.07812  $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ õ, ũ 0.34  $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 **RPV EW 3-leptons**  $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$ 3 e, µ 139  $[BR(Z\tau)=1, BR(Ze)=1]$ 0.625 1.05 Pure Wino 2011.10543  $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ 139 0.95 1.55  $4 e, \mu$ 0 jets 2103.11684  $E_T^m$  $[\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$  $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$ **RPV 4-leptons**  $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 4-5 large jets 36.1 13 1.9 Large  $\lambda_{117}''$ 1804.03568 - ſm( $\widetilde{X}$  $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}^0_1, \tilde{\chi}^0_1 \rightarrow t b s$ Multiple 36.1 =2e-4, 1e 0.55 1.05  $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like ATLAS-CONF-2018-003 RPV multi-b-jet  $\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$  $\geq 4b$ 139 Forbidden 0.95 2010.01015 m(X1)=500 GeV 2 jets + 2 b 36.7 0.42 0.61 1710.07171  $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ [qq, bs]

0.4-1.45

16

\*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

 $2 e, \mu$ 

1μ

1-2 e, µ

2b

DV

≥6 jets

36.1

136

139

10<sup>-1</sup>

 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ 

 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$ 

-10< 1/ <1e-8, 3e-10< 1/ </

0.2-0.32

19