The nEXO neutrinoless double beta decay experiment

Brian Lenardo Lake Louise Winter Institute 2022 February 24, 2022

1

Searching for new physics via 0*ββ*

0*ββ* **decay is a powerful probe of physics beyond the standard model:**

- Majorana nature of neutrino ($\nu = \bar{\nu}$?)
- Lepton number violation
- Connections to absolute neutrino mass scale, matter/antimatter asymmetry

Avignone, Elliott, & Engel Rev. Mod. Phys. **80** (2008)

Current $T_{1/2}$ limits: >10²⁶ years!

Requirements for next-gen 0*ββ* **experiments:**

- O(1) tonne of the isotope of interest ($>10^{27}$ atoms)
- Ultra-low radioactivity detector(s)
- Strong signal/background discrimination
- Good energy resolution

The nEXO collaboration

Liquid xenon TPCs for next-gen 0ββ

A LOT of the *ββ* **isotope (136Xe)**

- Ton-scale LXe TPCs are already operating for DM
- Enrichment is straightforward

Low, well-characterized backgrounds in MeV range (low radioactivity)

Low intrinsic backgrounds & excellent self-shielding

Good energy resolution

- Combining charge and light can reach <1%

Signal/background discrimination

- Powerful position reconstruction and multi-site rejection to characterize and reject BG

Possibility of a control experiment

Can run with both enriched and depleted xenon to confirm a discovery

Addressing the challenges for next-gen 0ββ

A LOT of the *ββ* **isotope (136Xe)**

- Ton-scale LXe TPCs are already operating for DM
- Enrichment is straightforward

Low, well-characterized backgrounds in MeV range (low radioactivity)

Low intrinsic backgrounds & excellent self-shielding

Good energy resolution

Combining charge and light can reach <1%

Signal/background discrimination

- Powerful position reconstruction and multi-site rejection to characterize and reject BG

Possibility of a control experiment

Can run with both enriched and depleted xenon to confirm a discovery

Scaling up from EXO-200 to nEXO

EXO-200: 2011 - 2018

- First 100kg-class 0νββ search
- Discovered 2νββ in ¹³⁶Xe
- T1/2 > 3.5 x 1025 yr for 0νββ in 136Xe (PRL **123,** 2019)
- Multiple leading limits on other decay modes of $136Xe$ and $134Xe$
- Pioneered ultra-low-background LXe TPC technology

nEXO:

- More 136Xe: 200 kg -> 5000 kg

inside instrumented water shield

- More shielding: >10x10m active water shield

~1.3 x 1.3m

TPC

- **- Larger overburden:** 2000m underground
- **- Upgraded instrumentation:** SiPMs for light, new "tiles" for charge, all with cold electronics

Brian Lenardo Lake Louise Winter Institute

Major ongoing R&D: instrumentation

Charge sensing with modular tiles and cold electronics

~4.5 m² array of VUV silicon photomultipliers (SiPMs)

LXe-compatible 24-SiPM array

Multi-parameter background rejection

Energy

Reconstructed as sum of scintillation photons and ionization electrons: $E = W (N_{ph} + N_e)$

3D event topology

Discrimination between single-site (*ββ*-like) and multi-site (*γ*-like) events, enhanced by deep neural net

Standoff distance

Self-shielding of liquid xenon reduces backgrounds in central region of detector

Data-driven background modeling

Extrapolated from EXO-200

Radioassay measurements of materials

Predicted via external measurements

Data-driven background modeling

Projected event distributions in nEXO

Event distributions in "region of interest" (ROI)

nEXO's ROI is defined as:

- Energy within 0*ββ* FWHM
- $DNN > 0.85$ ("single-site" events)
- Innermost 2 tonnes of liquid Xe (cut on standoff)

nEXO's sensitivity

Adhikari et al., J. Phys. G 49 (2022), arXiv:2106.16243

Physics reach

Physics reach

Physics reach

Distribution of nuclear matrix element calculations*

Conclusions

- **1. Neutrinoless double beta decay is a powerful way to search for physics beyond the standard model**
	- Most sensitive probe of lepton number violation
	- Potentially connected to neutrino mass and matter/antimatter asymmetry
- **2. The nEXO experiment will perform a next-generation search using a liquid xenon TPC, building on a robust design with unique capabilities**
	- Multi-variate analysis for signal/background identification
	- Can perform a control experiment using non-enriched xenon in the same detector
- **3. The next generation of experiments will push two orders of magnitude in sensitivity to the half-life, with significant discovery potential for new physics**
	- Very exciting time for 0γββ!

Thank you!

Why look for 0*ββ***?**

PHYSICAL REVIEW D 95, 115010 (2017) Lepton-number-violating searches for muon to positron conversion Jeffrey M. Berryman,¹ André de Gouvêa,¹ Kevin J. Kelly,¹ and Andrew Kobach² ¹Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA ²Department of Physics, University of California, San Diego, La Jolla, California 92093, USA (Received 12 December 2016; published 8 June 2017)

EFT analysis for LNV operators

0νβ-β - decay

 $T_{1/2}$ > 1.06 \times 10²⁶ years (KAMLAND-Zen)

µ → e⁺ conversion

 $R < 1.7 \times 10^{-12}$ (SINDRUM II)

Conclusion: 0νββ decay is the most sensitive probe of lepton number violation…*by far*

TABLE III. Same as Table I, for the dimension-nine operators featured in this analysis. Naming convention follows from Refs. [11.15], with the exception of the singlet operator $(2, 117)$. \mathcal{O} Operator Λ ITeV $T_{0\nu\beta\beta}$ $R_{u^-e^+}$ $\mathcal{O}_{\varepsilon}$ $(LH)(LH)(OH)d^c$ $6 \times 10^{4-5}$ $\ln(2) \left(\frac{\sqrt{2}}{G}\right)^2 q^2 \frac{\Lambda^2}{Q^{11}} \left[\left(\frac{G_F}{\sqrt{2}}\right)^2 \frac{1}{r^2} \left(\frac{y_b v^2}{(16\pi^2)^2}\right)^2 + \left(\frac{v}{16\pi^2}\Lambda^2 + \frac{v^3}{\Lambda^4}\right)^2 \right]^{-1} \sim 10^{25}-10^{27}$ yr $\frac{1}{a}\frac{Q^6}{\lambda^2}\left[\left(\frac{G_F}{A}\right)^2 \frac{1}{a^2}\left(\frac{y_b v^2}{(16a^2)^2}\right)^2 + \left(\frac{v}{16a^2\lambda^2} + \frac{v^3}{\lambda^4}\right)^2\right] \sim 10^{-40}-10^{-38}$ \mathcal{O}_6 $\ln(2) \left(\frac{\sqrt{2}}{C}\right)^2 q^2 \frac{\Lambda^2}{Q^{\text{II}}} \left[\left(\frac{G_F}{Z}\right)^2 \frac{1}{r^2} \left(\frac{y_t v^2}{(16\pi^2)^2}\right)^2 + \left(\frac{v}{16\pi^2\Lambda^2} + \frac{v^3}{\Lambda^4}\right)^2 \right]^{-1} \sim 10^{25} - 10^{27} \text{ yr}$ $(LH)(L\bar{H})(\bar{O}H)\overline{u^c}$ $2 \times 10^{6-7}$ $\frac{1}{a} \frac{Q^6}{\lambda^2} \left[\left(\frac{G_F}{\sqrt{2}} \right)^2 \frac{1}{\alpha^2} \left(\frac{y_t v^2}{(16\pi^2)^2} \right)^2 + \left(\frac{v}{16\pi^2 \lambda^2} + \frac{v^3}{\lambda^4} \right)^2 \right] \sim 10^{-37} - 10^{-35}$ \mathcal{O}_7 $4 \times 10^{1-2}$ $\ln(2) \left(\frac{\sqrt{2}}{G_c}\right)^2 q^2 \frac{\Lambda^2}{Q^{11}} \left[\left(\frac{G_F}{\sqrt{2}}\right) \frac{v}{(16\pi^2)^2} + \frac{v}{16\pi^2\Lambda^2} + \frac{v^3}{\Lambda^4} \right]^{-2} \sim 10^{22} - 10^{24}$ yr $(LH)(OH)(OH)e^c$ $\frac{1}{r^2} \frac{Q^6}{\Lambda^2} \left[\left(\frac{G_F}{\Delta} \right) \frac{v}{(16\pi^2)^2} + \frac{v}{16\pi^2\Lambda^2} + \frac{v^3}{\Lambda^4} \right]^2 \sim 10^{-34} - 10^{-32}$ \mathcal{O}_α $(LL)(LL)e^ce^c$ $3 \times 10^{2-3}$ $\ln(2) (\frac{\sqrt{2}}{G_e})^4 q^4 (\frac{16\pi^2}{v_e v})^4 \frac{\Lambda^2}{Q^{11}} \sim 10^{25} - 10^{27}$ yr G_F 2 1 (y_e v 34 Q^6 ... 10-38 14

