LEGEND: Searching for Neutrinoless Double Beta Decay

LEGEND

Mehdi Shafiee, Queen's University

24 Feb 2022

Lake Louise Winter Institute

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Neutrinoless double beta decay $0v\beta\beta$

Majorana neutrino mass

• The green area shows the allowed regions for all possible CP-phases by assuming 3σ intervals of the neutrino oscillation observables.

Most recent experimental results

 $T_{1/2}^{-1} \propto \left\langle m_{\beta\beta} \right\rangle^2$

Comparison of lower half-life limits $T_{1/2}^{0\nu}$ (90% CL) and corresponding upper Majorana neutrino mass $m_{\beta\beta}$ limits for the present-generation experiments

Experiment	Isotope	$\mathbf{Exposure} \ [\mathbf{kg-yr}]$	$T_{1/2}^{0 u}[{f 10}^{25}~{f yr}]$	$m_{\beta\beta}[\mathbf{meV}]$
Gerda	$^{76}\mathrm{Ge}$	127.2	18	79-180 Phy.Rev.Lett. 125, 252502, 2020
MAJORANA	$^{76}\mathrm{Ge}$	26	2.7	200-433 Phy.Rev.C100. 025501, 2020 $$.
KamLAND-Zen	136 Xe	594	10.7	61-165 Phy.Rev.Lett. 117, 082503, 2016
EXO-200	136 Xe	234.1	3.5	93-286 Phy.Rev.Lett. 123, 161802, 2019
CUORE	$^{130}\mathrm{Te}$	1038.4	2.2	90-305 arXiv 2104.6906, 2021

&

Date

Ge experiments sensitivity & discovery

- Excellent energy resolution
- Accurate reconstruction event and clear topological discrimination using PSD
- Provide excellent discovery power even for small exposures
- Higher detection efficiency as almost all decay contribute to the sensitivity
- In order to probe the region of inverted mass hierarchy, need exposures of 10 tonne.year with background rates of < 0.1 cts/FWHM/ tonne/year

MAJORANA DEMONSTRATOR & GERDA

Phy.Rev.C100. 025501, 2020

MAJORANA DEMONSTRATOR at SURF:

- Two compact vacuum cryostats + shielding (Cu/Pb)
- 30kg enriched detectors, 14kg natural abundances
- Custom Low Mass Front End electronics
- Extensive use of underground electroformed copper
- Best energy resolution(0.12 % FWHM at 2039 KeV)

GERDA at LNGS:

- Phy.Rev.Lett. 125, 252502, 2020
- Detectors deployed in liquid argon as scintillating veto
- 35kg of enriched detectors (coax + BEGe)
- Complete background modelling over large energy range
- Lowest background index (5.2×10^{-4} cts/(keV kg yr))

The LEGEND program

- LEGEND: Large Enriched Germanium Experiment for Neutrinoless bb Decay
 arXiv 1810.00849,2018
- Formed from the MAJORANA and GERDA collaborations
- <u>Goal</u>: 3σ detection of a $0\nu\beta\beta$ signal in ⁷⁶Ge for half-lives of **10²⁷** years for **L-200** & **10²⁸** years for **L-1000** (inverted mass hierarchy)
- Method:
 - Reuse of best technologies from MJD and GERDA:
 - Electroformed copper
 - Low mass front-end electronics
 - Immersion in liquid argon
 - Develop new technologies:
 - New detector type (ICPC detectors)
 - Scintillating structural materials
 - Electronics
- **Program**:
 - L-200 experiment to deploy 200kg of enriched detectors
 and make use of the existing GERDA infrastructure at LNGS
 - L-1000 proposed for 1000kg of enriched detectors (baseline is SNOLAB)

Germanium Detectors

- Inverted Coaxial Point Contact detectors:
 - The semi-coaxial "well" allows for larger mass detectors that will still deplete with a "reasonable" (<5kV) reverse-bias voltage
 - More than 3kg per detector (compare with ~1kg for "standard" PPC)
 - Larger detectors → Less detectors →
 Less radioactive components near detectors
 - Larger detectors → Larger
 volume/passivated surface → Less
 backgrounds from alpha radiation

Speaker Name | Talk Title |

Date

LEGEND-200

LEGEND

- It uses the existing GERDA cryostat and structure of low-Z shielding (water and argon) and an active veto and ultra-clean low mass materials and cables and electronics including those developed for the MAJORANA DEMONSTRATOR
- Simulated background index of 2×10^{-4} cts/(keV kg yr) and reduction by a factor of 2.5 compared to GERDA
- Half-life sensitivity measurement of **10²⁷** years equal to **29-60** meV
- L-200 reuses approximately 70 kg of enriched detectors from MAJORANA and GERDA and an additional 130 kg of newly fabricated ICPC enriched detectors

LEGEND-1000

- The goal for LEGEND-1000 is to reach a half-life discovery sensitivity of 1.3×10^{28} yr, corresponding to a $m_{\beta\beta}$ upper limit in the range of 9-21meV in 10 yr of live time. This projected background index of 10^{-5} cts/(keV kg yr) or less than 0.025 cts/(FWHM t yr) will meet this sensitivity.
- The additional 20-fold background reduction anticipated for LEGEND-1000 with respect to LEGEND-200 is
 obtained primarily by the use of underground-sourced Ar, new less-radioactive electronics and cables, and the
 presence of only ICPC detectors.
- Approximately 400 individual ICPCs with an average mass of 2.6 kg will be instrumented for a total detector active mass near 1000 kg
 arXiv 2107.11462,2021 (pCDR)

A baseline conceptual design of the LEGEND-1000

Ge	T		
Strings			
	<u></u>		
	-		
		1	
	11		
WL	S Fiber		

Parameter	Value				
Performance Parameters					
0 uetaeta decay isotope	$^{76}\mathrm{Ge}$				
Q_{etaeta}	$2039 \ \mathrm{keV}$				
Total mass	$1000 \mathrm{kg}$				
Energy resolution at $Q_{\beta\beta}$	2.5 keV FWHM				
Overall signal acceptance ^a	0.69				
Live time goal	10 yr				
Total exposure goal	$10 \mathrm{tyr}$				
Background goal	$<1\times10^{-5}{\rm cts}/({\rm keVkgyr})$				
	$< 0.025\mathrm{cts}/(\mathrm{FWHMtyr})$				
$T_{1/2}^{0 u}$	$1.3\times10^{28}{\rm yr}$ (99.7% CL discovery)				
	$1.6 \times 10^{28} \mathrm{yr}$ (90% CL sensitivity)				
m_{etaeta}	9.4-21.4 meV (99.7% CL discovery)				
	(8.5-19.4 meV)(90% CL sensitivity)				

LEGEND-Liquid argon

LEGEND

- GERDA pioneered the use of liquid argon as:
 - Cooling medium
 - Shielding
 - Active veto
- ⁴²Ar is a background of concern (the subsequent decay of ⁴²K has a Q-value of 3.5 MeV)
- Reduction in ⁴²Ar by procuring "Underground Liquid Argon", UGLAr
- ⁴²Ar is cosmogenically produced, much like ³⁹Ar which is of interest to the dark matter community
- Reduction of order 1400x for ³⁹Ar & ⁴⁰Ar
- LEGEND and dark matter community collaborating on UGLAr extraction and purification
- DarkSide-20k is developing a plant to extract underground argon from Colorado and purify it in Italy, at 90 tonnes/year → after 1 year (~2025), can easily produce ~20 tonnes required for L-1000 (to fill the reentrant tubes)

arXiv 2107.11462 ,2021(pCDR)

Front-End Electronics

- For L-200 we use low mass front end (LMFE)-JFET preamp from MAJORANA DEMONSTRATOR
- Legend-1000 will use CMOS ASICs charge sensitive preamp which are self-contained in a cubic mm
- The equivalent noise charge (ENC) of L1K for typical ICPC detectors with capacitance of 5 pF and leakage current of 20 pA, the simulated ENC is 130 eV FWHM.
- The L1K ASIC was observed to have a bandwidth of >35 MHz and consume < 40 mW.

Main backgrounds in LEGEND-1000:

- **U/Th decay chains**: Gamma rays from the chain can deposit energy above the Q-value. Reduced by using larger detectors with fewer smaller and cleaner readout components.
- ⁴²K decays: Reduced by using UGLAr
- **Alpha decays on detector surfaces**: Reduced by a factor ~4 compared to GERDA (larger volume/surface)
- **Cosmogenically produced isotopes in Ge**: Will be comparable or slightly increased if detectors have less cooldown time (⁶⁸Ge has 271d)

Summary

- The LEGEND collaboration was formed to bring together the technical expertise and leadership from both the MAJORANA and GERDA collaborations, as well as add new members to strengthen core capabilities.
- Technical advancements have resulted in larger detectors with better energy resolution, operating within a scintillating medium for enhanced background suppression, cleaner materials, and low-noise electronics to expand the overall reach of the technology.
- LEGEND-200 uses the GERDA design of low-Z shielding (water and argon) and an active veto through the detection of argon scintillation light. Muon and γ -induced backgrounds are reduced or vetoed. It is projected to have a background index of 2×10^{-4} cts/(keV kg yr) resulting in a sensitivity of as low as 29meV for $m_{\beta\beta}$ and half-life discovery sensitivity of 10^{27} yr.
- LEGEND-1000 combines the fundamental strengths of the GERDA, MAJORANA, and LEGEND-200 experiments. it is yielding a projected background index of 10^{-5} cts/(keV kg yr) equal to sensitivity of as low as 10meV for $m_{\beta\beta}$ and half-life discovery sensitivity of 1.3×10^{28} yr.
- SNOLAB is baseline host lab for LEGEND-1000. New collaborators are welcome!

Interested in joining LEGEND-1000 in Canada?

Contact Prof. Ryan Martin (LEGEND PI in Canada, Queen's University)

Link to conceptual design report: <u>https://arxiv.org/abs/2107.11462</u>

Questions?